Domino tilings of aztec diamonds and squares
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 180-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article gives several new combinatorial proofs of well-known theorems about domino tilings of aztec diamonds and squares. We prove also generalizations of these theorems for the generating polynomials of some statistics of tilings. Some results here are new, for example, we describe how to calculate the rank of a tiling using special weights of edges on the square grid. The text is self-sufficient, we give numerous illustrations to all combinatorial constructions. Bibl. – 17 titles.
@article{ZNSL_2008_360_a8,
     author = {K. Kokhas},
     title = {Domino tilings of aztec diamonds and squares},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {180--230},
     year = {2008},
     volume = {360},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a8/}
}
TY  - JOUR
AU  - K. Kokhas
TI  - Domino tilings of aztec diamonds and squares
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 180
EP  - 230
VL  - 360
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a8/
LA  - ru
ID  - ZNSL_2008_360_a8
ER  - 
%0 Journal Article
%A K. Kokhas
%T Domino tilings of aztec diamonds and squares
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 180-230
%V 360
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a8/
%G ru
%F ZNSL_2008_360_a8
K. Kokhas. Domino tilings of aztec diamonds and squares. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 180-230. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a8/

[1] S. L. Berlov, S. V. Ivanov, K. P. Kokhas, Peterburgskie matematicheskie olimpiady, Zadacha 97.109, Lan, SPb., 2003

[2] K. P. Kokhas, “Razbieniya na domino”, Mat. prosveschenie. Ser. 3, 9 (2005), 143–163

[3] M. Ciucu, “Enumeration of perfect matchings in graphs with reflective symmetry”, J. Combin. Theory Ser. A, 77:1 (1997), 67–97 | DOI | MR | Zbl

[4] M. Ciucu, “Perfect matchings and perfect powers”, J. Algebraic Combin., 17:3 (2003), 335–375 | DOI | MR | Zbl

[5] N. Elkies, G. Kuperbeg, M. Larsen, J. Propp, “Alternating-sign matrices and domino tilings”, J. Algebraic Combin., 1 (1992), 111–132 | DOI | MR | Zbl

[6] I. M. Gessel, X. G. Viennot, Determinants, paths and plane partitions, Preprint, 1989 | Zbl

[7] P. John, P. Sachs, H. Zarnitz, “Domino covers in square chessboards”, Zastosowania Matematyki (Applicationes Mathematicae), XIX:3–4 (1987), 635–641

[8] P. W. Kasteleyn, “The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice”, Physica, 27 (1961), 1209–1225 | DOI

[9] E. Kuo, “Application of graphical condensation for enumerating matchings”, Teoret. Comput. Sci., 319 (2004), 29–57 ; arXiv: math/0304090 | DOI | MR | Zbl

[10] L. Pachter, “Combinatorial approaches and conjectures for 2-divisibility problems concerning domino tilings of polyminoes”, Electron. J. Combin., 4 (1997), R29 | MR | Zbl

[11] J. Propp, Frieze-ing and condensation, http:// www.math.wisc.edu/~propp/bilinear/domino | MR

[12] J. Propp, Generalized domino shuffling, arXiv: math/0111034 | MR

[13] J. Propp, R. Stanley, “Domino tilings with barriers”, J. Combin. Theory Ser. A, 87:2 (1999), 347–356 ; arXiv: math/9801067 | DOI | MR | Zbl

[14] Eu Sen-Peng, Fu Tung Shan, A simple proof of Aztec diamond theorem, arXiv: math/0412041 | MR

[15] D. Speyer, “Perfect matchings and the octahedron recurrence”, J. Algebraic Combin., 25:3 (2007), 309–348 | DOI | MR | Zbl

[16] V. Strehl, “Counting domino tilings of rectangles via Resultants”, Adv. in Appl. Math., 27:2–3 (2001), 597–626 | DOI | MR | Zbl

[17] Yang Bo-Yin, Three enumeration problems concerning Aztec diamonds, Ph. D. Thesis, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, 1991