@article{ZNSL_2008_360_a8,
author = {K. Kokhas},
title = {Domino tilings of aztec diamonds and squares},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {180--230},
year = {2008},
volume = {360},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a8/}
}
K. Kokhas. Domino tilings of aztec diamonds and squares. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 180-230. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a8/
[1] S. L. Berlov, S. V. Ivanov, K. P. Kokhas, Peterburgskie matematicheskie olimpiady, Zadacha 97.109, Lan, SPb., 2003
[2] K. P. Kokhas, “Razbieniya na domino”, Mat. prosveschenie. Ser. 3, 9 (2005), 143–163
[3] M. Ciucu, “Enumeration of perfect matchings in graphs with reflective symmetry”, J. Combin. Theory Ser. A, 77:1 (1997), 67–97 | DOI | MR | Zbl
[4] M. Ciucu, “Perfect matchings and perfect powers”, J. Algebraic Combin., 17:3 (2003), 335–375 | DOI | MR | Zbl
[5] N. Elkies, G. Kuperbeg, M. Larsen, J. Propp, “Alternating-sign matrices and domino tilings”, J. Algebraic Combin., 1 (1992), 111–132 | DOI | MR | Zbl
[6] I. M. Gessel, X. G. Viennot, Determinants, paths and plane partitions, Preprint, 1989 | Zbl
[7] P. John, P. Sachs, H. Zarnitz, “Domino covers in square chessboards”, Zastosowania Matematyki (Applicationes Mathematicae), XIX:3–4 (1987), 635–641
[8] P. W. Kasteleyn, “The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice”, Physica, 27 (1961), 1209–1225 | DOI
[9] E. Kuo, “Application of graphical condensation for enumerating matchings”, Teoret. Comput. Sci., 319 (2004), 29–57 ; arXiv: math/0304090 | DOI | MR | Zbl
[10] L. Pachter, “Combinatorial approaches and conjectures for 2-divisibility problems concerning domino tilings of polyminoes”, Electron. J. Combin., 4 (1997), R29 | MR | Zbl
[11] J. Propp, Frieze-ing and condensation, http:// www.math.wisc.edu/~propp/bilinear/domino | MR
[12] J. Propp, Generalized domino shuffling, arXiv: math/0111034 | MR
[13] J. Propp, R. Stanley, “Domino tilings with barriers”, J. Combin. Theory Ser. A, 87:2 (1999), 347–356 ; arXiv: math/9801067 | DOI | MR | Zbl
[14] Eu Sen-Peng, Fu Tung Shan, A simple proof of Aztec diamond theorem, arXiv: math/0412041 | MR
[15] D. Speyer, “Perfect matchings and the octahedron recurrence”, J. Algebraic Combin., 25:3 (2007), 309–348 | DOI | MR | Zbl
[16] V. Strehl, “Counting domino tilings of rectangles via Resultants”, Adv. in Appl. Math., 27:2–3 (2001), 597–626 | DOI | MR | Zbl
[17] Yang Bo-Yin, Three enumeration problems concerning Aztec diamonds, Ph. D. Thesis, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, 1991