@article{ZNSL_2008_360_a7,
author = {V. S. Kapitonov and A. G. Pronko},
title = {The five-vertex model and boxed plane partitions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {162--179},
year = {2008},
volume = {360},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a7/}
}
V. S. Kapitonov; A. G. Pronko. The five-vertex model and boxed plane partitions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 162-179. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a7/
[1] G. E. Andrews, The Theory of Partitions, Addison-Wesley Publishing, 1976 | MR | Zbl
[2] D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[3] B. Lindstrom, “On the vector representations of induced matroids”, Bull. London Math. Soc., 5 (1973), 85–90 | DOI | MR
[4] I. M. Gessel, X. Viennot, “Binomial determinants, paths, and hook length formulae”, Adv. Math., 58 (1985), 300–321 | DOI | MR | Zbl
[5] K. Johansson, “Nonitersecting paths, random tilings and random matrices”, Probab. Theory Rel. Fields, 123 (2002), 225–280 | DOI | MR | Zbl
[6] H. Cohn, M. Larsen, J. Propp, “The shape of a typical boxed plane partition”, New York J. Math., 4 (1998), 137–165 | MR | Zbl
[7] M. Fulmek, C. Krattenthaler, “The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis. I”, Ann. Combin., 2 (1998), 19–40 ; arXiv: math/9712244 | DOI | MR
[8] M. Fulmek, C. Krattenthaler, “The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis. II”, Europ. J. Combin., 21 (2000), 601–640 ; arXiv: math/9909038 | DOI | MR | Zbl
[9] C. Krattenthaler, “A (conjectural) $1/3$-phenomenon for the number of rhombus tilings of a hexagon which contain a fixed rhombus”, Number Theory and Discrete Mathematics, eds. A. K. Agarwal et al., Hindustan Book Agency, New Delhi, 2002, 13–30 ; arXiv: math/0101009 | MR
[10] M. Ciucu, C. Krattenthaler, A factorization theorem for classical group characters, with applications to plane partitions and rhombus tilings, arXiv: 0812.1251 | MR
[11] A. Okounkov, N. Reshetikhin, “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. Amer. Math. Soc., 16 (2003), 581–603 | DOI | MR | Zbl
[12] P. L. Ferrari, H. Spohn, “Step fluctuations for a faceted crystal”, J. Stat. Phys., 113 (2003), 1–46 | DOI | MR | Zbl
[13] A. Okounkov, N. Reshetikhin, Random skew plane partitions and the Pearcey process, arXiv: math/0503508 | MR
[14] R. Kenyon, A. Okounkov, Limit shapes and the complex Burgers equation, arXiv: math-ph/0507007 | MR
[15] R. Kenyon, A. Okounkov, S. Sheffield, “Dimers and amoebae”, Ann. Math., 163:3 (2006), 1019–1056 | DOI | MR | Zbl
[16] G. Kuperberg, “Another proof of the alternative-sign matrix conjecture”, Int. Math. Res. Not., 1996:3 (1996), 139–150 | DOI | MR | Zbl
[17] D. Zeilberger, “Proof of the refined alternating sign matrix conjecture”, New York J. Math., 2 (1996), 59–68 ; arXiv: math/9606224 | MR | Zbl
[18] G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv: math/0008184 | MR
[19] A. V. Razumov, Yu. G. Stroganov, “Bethe roots and refined enumeration of alternating-sign matrices”, J. Stat. Mech., 2006, P07004 ; arXiv: math-ph/0605004 | DOI | MR
[20] F. Colomo, A. G. Pronko, The limit shape of large alternating-sign matrices, arXiv: math-ph/0803.2697 | MR
[21] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A, 38 (2005), 9415–9430 ; arXiv: cond-mat/0503748 | DOI | MR | Zbl
[22] N. V. Tsilevich, “Kvantovyi metod obratnoi zadachi dlya $q$-bozonnoi modeli i simmetricheskie funktsii”, Funkts. analiz i ego pril., 40:3 (2006), 53–65 | MR | Zbl
[23] N. M. Bogolyubov, “Chetyrekhvershinnaya model i sluchainye ukladki”, Teor. mat. fiz., 155:1 (2008), 25–38 | MR
[24] N. M. Bogolyubov, Pyativershinnaya model s fiksirovannymi granichnymi usloviyami, Preprint 4/2008, POMI
[25] C. Destri, H. J. de Vega, “Light-cone lattice approach to fermionic theories in 2D: The massive Thirring model”, Nucl. Phys. B, 290 (1987), 363–391 | DOI | MR
[26] C. Itzykson, J.-M. Drouffe, Statistical Field Theory, V. 1, Cambridge Univ. Press, Cambridge, 1989 | Zbl
[27] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., Providence, RI, 1975 | MR | Zbl