The five-vertex model and boxed plane partitions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 162-179

Voir la notice de l'article provenant de la source Math-Net.Ru

Boxed plane partitions are considered in terms of the five-vertex model on a finite lattice with fixed boundary conditions. Assuming that all weights of the model have the same value, the one-point correlation function describing the probability of having a given state on an arbitrary horizontal edge of the lattice is calculated. This is equivalent to the enumeration of boxed plane partitions that correspond to rhombus tilings of a hexagon with one fixed rhombus of a particular type. The solution of the problem is given for the case of a box of generic size. Bibl. – 27 titles.
@article{ZNSL_2008_360_a7,
     author = {V. S. Kapitonov and A. G. Pronko},
     title = {The five-vertex model and boxed plane partitions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--179},
     publisher = {mathdoc},
     volume = {360},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a7/}
}
TY  - JOUR
AU  - V. S. Kapitonov
AU  - A. G. Pronko
TI  - The five-vertex model and boxed plane partitions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 162
EP  - 179
VL  - 360
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a7/
LA  - ru
ID  - ZNSL_2008_360_a7
ER  - 
%0 Journal Article
%A V. S. Kapitonov
%A A. G. Pronko
%T The five-vertex model and boxed plane partitions
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 162-179
%V 360
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a7/
%G ru
%F ZNSL_2008_360_a7
V. S. Kapitonov; A. G. Pronko. The five-vertex model and boxed plane partitions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 162-179. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a7/