The five-vertex model and boxed plane partitions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 162-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Boxed plane partitions are considered in terms of the five-vertex model on a finite lattice with fixed boundary conditions. Assuming that all weights of the model have the same value, the one-point correlation function describing the probability of having a given state on an arbitrary horizontal edge of the lattice is calculated. This is equivalent to the enumeration of boxed plane partitions that correspond to rhombus tilings of a hexagon with one fixed rhombus of a particular type. The solution of the problem is given for the case of a box of generic size. Bibl. – 27 titles.
@article{ZNSL_2008_360_a7,
     author = {V. S. Kapitonov and A. G. Pronko},
     title = {The five-vertex model and boxed plane partitions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--179},
     year = {2008},
     volume = {360},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a7/}
}
TY  - JOUR
AU  - V. S. Kapitonov
AU  - A. G. Pronko
TI  - The five-vertex model and boxed plane partitions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 162
EP  - 179
VL  - 360
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a7/
LA  - ru
ID  - ZNSL_2008_360_a7
ER  - 
%0 Journal Article
%A V. S. Kapitonov
%A A. G. Pronko
%T The five-vertex model and boxed plane partitions
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 162-179
%V 360
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a7/
%G ru
%F ZNSL_2008_360_a7
V. S. Kapitonov; A. G. Pronko. The five-vertex model and boxed plane partitions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 162-179. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a7/

[1] G. E. Andrews, The Theory of Partitions, Addison-Wesley Publishing, 1976 | MR | Zbl

[2] D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[3] B. Lindstrom, “On the vector representations of induced matroids”, Bull. London Math. Soc., 5 (1973), 85–90 | DOI | MR

[4] I. M. Gessel, X. Viennot, “Binomial determinants, paths, and hook length formulae”, Adv. Math., 58 (1985), 300–321 | DOI | MR | Zbl

[5] K. Johansson, “Nonitersecting paths, random tilings and random matrices”, Probab. Theory Rel. Fields, 123 (2002), 225–280 | DOI | MR | Zbl

[6] H. Cohn, M. Larsen, J. Propp, “The shape of a typical boxed plane partition”, New York J. Math., 4 (1998), 137–165 | MR | Zbl

[7] M. Fulmek, C. Krattenthaler, “The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis. I”, Ann. Combin., 2 (1998), 19–40 ; arXiv: math/9712244 | DOI | MR

[8] M. Fulmek, C. Krattenthaler, “The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis. II”, Europ. J. Combin., 21 (2000), 601–640 ; arXiv: math/9909038 | DOI | MR | Zbl

[9] C. Krattenthaler, “A (conjectural) $1/3$-phenomenon for the number of rhombus tilings of a hexagon which contain a fixed rhombus”, Number Theory and Discrete Mathematics, eds. A. K. Agarwal et al., Hindustan Book Agency, New Delhi, 2002, 13–30 ; arXiv: math/0101009 | MR

[10] M. Ciucu, C. Krattenthaler, A factorization theorem for classical group characters, with applications to plane partitions and rhombus tilings, arXiv: 0812.1251 | MR

[11] A. Okounkov, N. Reshetikhin, “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. Amer. Math. Soc., 16 (2003), 581–603 | DOI | MR | Zbl

[12] P. L. Ferrari, H. Spohn, “Step fluctuations for a faceted crystal”, J. Stat. Phys., 113 (2003), 1–46 | DOI | MR | Zbl

[13] A. Okounkov, N. Reshetikhin, Random skew plane partitions and the Pearcey process, arXiv: math/0503508 | MR

[14] R. Kenyon, A. Okounkov, Limit shapes and the complex Burgers equation, arXiv: math-ph/0507007 | MR

[15] R. Kenyon, A. Okounkov, S. Sheffield, “Dimers and amoebae”, Ann. Math., 163:3 (2006), 1019–1056 | DOI | MR | Zbl

[16] G. Kuperberg, “Another proof of the alternative-sign matrix conjecture”, Int. Math. Res. Not., 1996:3 (1996), 139–150 | DOI | MR | Zbl

[17] D. Zeilberger, “Proof of the refined alternating sign matrix conjecture”, New York J. Math., 2 (1996), 59–68 ; arXiv: math/9606224 | MR | Zbl

[18] G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv: math/0008184 | MR

[19] A. V. Razumov, Yu. G. Stroganov, “Bethe roots and refined enumeration of alternating-sign matrices”, J. Stat. Mech., 2006, P07004 ; arXiv: math-ph/0605004 | DOI | MR

[20] F. Colomo, A. G. Pronko, The limit shape of large alternating-sign matrices, arXiv: math-ph/0803.2697 | MR

[21] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A, 38 (2005), 9415–9430 ; arXiv: cond-mat/0503748 | DOI | MR | Zbl

[22] N. V. Tsilevich, “Kvantovyi metod obratnoi zadachi dlya $q$-bozonnoi modeli i simmetricheskie funktsii”, Funkts. analiz i ego pril., 40:3 (2006), 53–65 | MR | Zbl

[23] N. M. Bogolyubov, “Chetyrekhvershinnaya model i sluchainye ukladki”, Teor. mat. fiz., 155:1 (2008), 25–38 | MR

[24] N. M. Bogolyubov, Pyativershinnaya model s fiksirovannymi granichnymi usloviyami, Preprint 4/2008, POMI

[25] C. Destri, H. J. de Vega, “Light-cone lattice approach to fermionic theories in 2D: The massive Thirring model”, Nucl. Phys. B, 290 (1987), 363–391 | DOI | MR

[26] C. Itzykson, J.-M. Drouffe, Statistical Field Theory, V. 1, Cambridge Univ. Press, Cambridge, 1989 | Zbl

[27] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., Providence, RI, 1975 | MR | Zbl