On the coincidence of the canonical embeddings of a~metric space into a~Banach space
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 153-161

Voir la notice de l'article provenant de la source Math-Net.Ru

Recall the two classical canonical isometric embeddings of a finite metric space $X$ into a Banach space. That is, the Hausdorff–Kuratowsky embedding $x\to\rho(x,\cdot)$ into the space of continuous functions on $X$ with the max-norm, and the Kantorovich–Rubinshtein embedding $x\to\delta_x$ (where $\delta_x$ is the $\delta$-measure concentrated at $x$) with the transportation norm. We prove that these embeddings are not equivalent if $|X|>4$. Bibl. – 2 titles.
@article{ZNSL_2008_360_a6,
     author = {P. B. Zatitskii},
     title = {On the coincidence of the canonical embeddings of a~metric space into {a~Banach} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {153--161},
     publisher = {mathdoc},
     volume = {360},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a6/}
}
TY  - JOUR
AU  - P. B. Zatitskii
TI  - On the coincidence of the canonical embeddings of a~metric space into a~Banach space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 153
EP  - 161
VL  - 360
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a6/
LA  - ru
ID  - ZNSL_2008_360_a6
ER  - 
%0 Journal Article
%A P. B. Zatitskii
%T On the coincidence of the canonical embeddings of a~metric space into a~Banach space
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 153-161
%V 360
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a6/
%G ru
%F ZNSL_2008_360_a6
P. B. Zatitskii. On the coincidence of the canonical embeddings of a~metric space into a~Banach space. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 153-161. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a6/