Discrete symmetries, Darboux transformation, and exact solutions of the Wess–Zumino–Novikov–Witten model
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 139-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The matrix Darboux transformation is applied to an auxiliary problem of the classical Wess–Zumino–Novikov–Witten model. One and two soliton solutions are written explicitly, and a matrix expression for the $N$-soliton solution is given. Discrete symmetries of the WZNW model are analyzed, and a solution of the linearized equation of motion is obtained. Bibl. – 19 titles.
@article{ZNSL_2008_360_a5,
     author = {E. Sh. Gutshabash and P. P. Kulish},
     title = {Discrete symmetries, {Darboux} transformation, and exact solutions of the {Wess{\textendash}Zumino{\textendash}Novikov{\textendash}Witten} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--152},
     year = {2008},
     volume = {360},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a5/}
}
TY  - JOUR
AU  - E. Sh. Gutshabash
AU  - P. P. Kulish
TI  - Discrete symmetries, Darboux transformation, and exact solutions of the Wess–Zumino–Novikov–Witten model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 139
EP  - 152
VL  - 360
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a5/
LA  - ru
ID  - ZNSL_2008_360_a5
ER  - 
%0 Journal Article
%A E. Sh. Gutshabash
%A P. P. Kulish
%T Discrete symmetries, Darboux transformation, and exact solutions of the Wess–Zumino–Novikov–Witten model
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 139-152
%V 360
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a5/
%G ru
%F ZNSL_2008_360_a5
E. Sh. Gutshabash; P. P. Kulish. Discrete symmetries, Darboux transformation, and exact solutions of the Wess–Zumino–Novikov–Witten model. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 139-152. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a5/

[1] S. Weinberg, The Quantum Theory of Fields. Modern Applications, Vol. 2, Cambridge Univ. Press, 1996 | MR | Zbl

[2] S. V. Ketov, Vvedenie v kvantovuyu teoriyu strun i superstrun, SO RAN, Novosibirsk, 1991 | MR

[3] P. Di Francesco, P. Mathieu, D. Senechal, Conformal Field Theory, Springer, 1997 | MR

[4] E. Abdalla, M. C. B. Abdalla, K. D. Rothe, Nonperturbative Methods in Two-Dimensional Quantum Field Theory, World Scientific, 1991

[5] A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, Cambridge Univ. Press, 2003 | MR | Zbl

[6] L. Feher, L. O'Rainfeartaign, P. Ruelle, I. Tsutsui, A. Wipf, Phys. Rep., 222 (1992), 1 | DOI | MR

[7] A. Melikyan, A. Pinzul and al., arXiv: 0808.2489v2[hep-th]

[8] V. G. Knizhnik, A. B. Zamolodchikov, Nucl. Phys. B, 247 (1984), 83 | DOI | MR | Zbl

[9] A. Alekseev, L. Faddeev, M. Semenov-Tian-Shansky, A. Volkov, Preprint CERN-TH-5981/91, 1991

[10] S. G. Rajeev, A. Stern, P. Vitale, Phys. Lett. B, 388 (1996), 769 | DOI | MR

[11] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[12] V. Matveev, M. Salle, Darboux Transformation and Solitons, Springer-Verlag, 1991 | MR

[13] V. E. Zakharov, A. V. Mikhailov, ZhETF, 74 (1978), 1953 | MR

[14] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[15] E. Sh. Gutshabash, Zap. nauchn. semin. POMI, 335, 2006, 119 | MR | Zbl

[16] Dzh. Dzh. Nimmo, K. R. Dzhilson, I. Okhta, TMF, 122:2 (2000), 284 | MR | Zbl

[17] E. Sh. Gutshabash, V. D. Lipovskii, TMF, 90:2 (1992), 259 | MR | Zbl

[18] G. G. Varzugin, E. Sh. Gutshabash, V. D. Lipovskii, TMF, 104:3 (1995), 513 | MR | Zbl

[19] E. Sh. Gutshabash, Pisma v ZhETF, 73 (2001), 317