Discrete symmetries, Darboux transformation, and exact solutions of the Wess--Zumino--Novikov--Witten model
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 139-152

Voir la notice de l'article provenant de la source Math-Net.Ru

The matrix Darboux transformation is applied to an auxiliary problem of the classical Wess–Zumino–Novikov–Witten model. One and two soliton solutions are written explicitly, and a matrix expression for the $N$-soliton solution is given. Discrete symmetries of the WZNW model are analyzed, and a solution of the linearized equation of motion is obtained. Bibl. – 19 titles.
@article{ZNSL_2008_360_a5,
     author = {E. Sh. Gutshabash and P. P. Kulish},
     title = {Discrete symmetries, {Darboux} transformation, and exact solutions of the {Wess--Zumino--Novikov--Witten} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--152},
     publisher = {mathdoc},
     volume = {360},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a5/}
}
TY  - JOUR
AU  - E. Sh. Gutshabash
AU  - P. P. Kulish
TI  - Discrete symmetries, Darboux transformation, and exact solutions of the Wess--Zumino--Novikov--Witten model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 139
EP  - 152
VL  - 360
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a5/
LA  - ru
ID  - ZNSL_2008_360_a5
ER  - 
%0 Journal Article
%A E. Sh. Gutshabash
%A P. P. Kulish
%T Discrete symmetries, Darboux transformation, and exact solutions of the Wess--Zumino--Novikov--Witten model
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 139-152
%V 360
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a5/
%G ru
%F ZNSL_2008_360_a5
E. Sh. Gutshabash; P. P. Kulish. Discrete symmetries, Darboux transformation, and exact solutions of the Wess--Zumino--Novikov--Witten model. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 139-152. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a5/