The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 124-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate the $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment using a description of this group as the inductive limit of the symmetric groups with respect to the periodic embeddings. Bibl. – 9 titles.
@article{ZNSL_2008_360_a4,
     author = {E. E. Goryachko},
     title = {The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--138},
     year = {2008},
     volume = {360},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/}
}
TY  - JOUR
AU  - E. E. Goryachko
TI  - The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 124
EP  - 138
VL  - 360
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/
LA  - ru
ID  - ZNSL_2008_360_a4
ER  - 
%0 Journal Article
%A E. E. Goryachko
%T The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 124-138
%V 360
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/
%G ru
%F ZNSL_2008_360_a4
E. E. Goryachko. The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 124-138. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/

[1] A. M. Vershik, S. V. Kerov, “Kharaktery i faktor-predstavleniya beskonechnoi simmetricheskoi gruppy”, DAN SSSR, 257:5 (1981), 1037–1040 | MR | Zbl

[2] A. M. Vershik, S. V. Kerov, “Kharaktery i faktor-predstavleniya beskonechnoi unitarnoi gruppy”, DAN SSSR, 267:2 (1982), 272–276 | MR | Zbl

[3] A. M. Vershik, S. V. Kerov, “Lokalno poluprostye algebry. Kombinatornaya teoriya i $\operatorname K_0$-funktor”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 26, VINITI, M., 1985, 3–56 | MR | Zbl

[4] A. M. Vershik, K. P. Kokhas, “Vychislenie gruppy Grotendika algebry $\mathbb C(\operatorname{PSL}(2,k))$, gde $k$ – schetnoe algebraicheski zamknutoe pole”, Algebra i analiz, 2:6 (1990), 98–106 | MR | Zbl

[5] K. P. Kokhas, “Klassifikatsiya kompleksnykh faktor-predstavlenii trekhmernoi gruppy Geizenberga nad schetnym polem konechnoi kharakteristiki”, Zap. nauchn. semin. POMI, 283, POMI, SPb., 2001, 140–155 | MR | Zbl

[6] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[7] R. Felps, Lektsii o teoremakh Shoke, Mir, M., 1968

[8] A. M. Vershik, S. V. Kerov, “The Grothendieck group of the infinite symmetric group and symmetric functions (with the elements of the theory of $\operatorname K_0$-functor of $AF$-algebras)”, Representation of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 39–117 | MR

[9] H.-L. Skudlarek, “Die unzerlegbaren Charaktere einiger diskreter Gruppen”, Math. Ann., 223 (1976), 213–231 | DOI | MR | Zbl