The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 124-138

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment using a description of this group as the inductive limit of the symmetric groups with respect to the periodic embeddings. Bibl. – 9 titles.
@article{ZNSL_2008_360_a4,
     author = {E. E. Goryachko},
     title = {The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--138},
     publisher = {mathdoc},
     volume = {360},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/}
}
TY  - JOUR
AU  - E. E. Goryachko
TI  - The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 124
EP  - 138
VL  - 360
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/
LA  - ru
ID  - ZNSL_2008_360_a4
ER  - 
%0 Journal Article
%A E. E. Goryachko
%T The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 124-138
%V 360
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/
%G ru
%F ZNSL_2008_360_a4
E. E. Goryachko. The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 124-138. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/