@article{ZNSL_2008_360_a4,
author = {E. E. Goryachko},
title = {The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--138},
year = {2008},
volume = {360},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/}
}
TY - JOUR AU - E. E. Goryachko TI - The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 124 EP - 138 VL - 360 UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/ LA - ru ID - ZNSL_2008_360_a4 ER -
E. E. Goryachko. The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 124-138. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/
[1] A. M. Vershik, S. V. Kerov, “Kharaktery i faktor-predstavleniya beskonechnoi simmetricheskoi gruppy”, DAN SSSR, 257:5 (1981), 1037–1040 | MR | Zbl
[2] A. M. Vershik, S. V. Kerov, “Kharaktery i faktor-predstavleniya beskonechnoi unitarnoi gruppy”, DAN SSSR, 267:2 (1982), 272–276 | MR | Zbl
[3] A. M. Vershik, S. V. Kerov, “Lokalno poluprostye algebry. Kombinatornaya teoriya i $\operatorname K_0$-funktor”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 26, VINITI, M., 1985, 3–56 | MR | Zbl
[4] A. M. Vershik, K. P. Kokhas, “Vychislenie gruppy Grotendika algebry $\mathbb C(\operatorname{PSL}(2,k))$, gde $k$ – schetnoe algebraicheski zamknutoe pole”, Algebra i analiz, 2:6 (1990), 98–106 | MR | Zbl
[5] K. P. Kokhas, “Klassifikatsiya kompleksnykh faktor-predstavlenii trekhmernoi gruppy Geizenberga nad schetnym polem konechnoi kharakteristiki”, Zap. nauchn. semin. POMI, 283, POMI, SPb., 2001, 140–155 | MR | Zbl
[6] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR
[7] R. Felps, Lektsii o teoremakh Shoke, Mir, M., 1968
[8] A. M. Vershik, S. V. Kerov, “The Grothendieck group of the infinite symmetric group and symmetric functions (with the elements of the theory of $\operatorname K_0$-functor of $AF$-algebras)”, Representation of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 39–117 | MR
[9] H.-L. Skudlarek, “Die unzerlegbaren Charaktere einiger diskreter Gruppen”, Math. Ann., 223 (1976), 213–231 | DOI | MR | Zbl