The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 124-138
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment using a description of this group as the inductive limit of the symmetric groups with respect to the periodic embeddings. Bibl. – 9 titles.
@article{ZNSL_2008_360_a4,
author = {E. E. Goryachko},
title = {The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--138},
publisher = {mathdoc},
volume = {360},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/}
}
TY - JOUR AU - E. E. Goryachko TI - The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 124 EP - 138 VL - 360 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/ LA - ru ID - ZNSL_2008_360_a4 ER -
E. E. Goryachko. The $\operatorname K_0$-functor and characters of the group of rational rearrangements of the segment. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 124-138. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a4/