@article{ZNSL_2008_360_a3,
author = {V. E. Gorin},
title = {Non-colliding {Jacobi} processes as limits of {Markov} chains on the {Gelfand{\textendash}Tsetlin} graph},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {91--123},
year = {2008},
volume = {360},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a3/}
}
V. E. Gorin. Non-colliding Jacobi processes as limits of Markov chains on the Gelfand–Tsetlin graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 91-123. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a3/
[1] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. Math., 161:3 (2005), 1319–1422 ; arXiv: math/0109194 | DOI | MR | Zbl
[2] A. Borodin, G. Olshanski, “Infinite-dimensional diffusions as limits of random walks on partitions”, Probab. Theory Related Fields (to appear) | MR
[3] A. Borodin, G. Olshanski, “Markov processes on partitions”, Probab. Theory Related Fields, 135:1 (2006), 84–152 ; arXiv: math-ph/0409075 | DOI | MR | Zbl
[4] J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Grundlehren der mathematischen Wissenschaften, 262, Springer-Verlag, New York, 1984 | MR | Zbl
[5] B. Eynard, M. L. Mehta, “Matrices coupled in a chain. I. Eigenvalue correlations”, J. Phys. A Math. Gen., 31 (1998), 4449–4456 | DOI | MR | Zbl
[6] J. Fulman, “Stein's method and Plancherel measure of the symmetric group”, Trans. Amer. Math. Soc., 357 (2005), 555–570 ; arXiv: math/0305423 | DOI | MR | Zbl
[7] J. Fulman, “Commutation relations and Markov chains”, Probab. Theory Related Fields (to appear) | MR
[8] V. E. Gorin, “Neperesekayuschiesya puti i ansambl ortogonalnykh mnogochlenov Khana”, Funkts. anal. i ego pril., 42:3 (2008), 23–44 ; arXiv: 0708.2349 | MR | Zbl
[9] K. Johansson, “Discrete polynuclear growth and determinantal processes”, Comm. Math. Phys., 242 (2003), 277–329 ; arXiv: math/0206208 | MR | Zbl
[10] W. König, N. O'Connell, “Eigenvalues of the Laguerre process as non-colliding squared Bessel processes”, Electron. Commun. Probab., 6:11 (2001), 107–114 | MR | Zbl
[11] W. D. König, “Orthogonal polynomial ensembles in probability theory”, Probab. Surv., 2 (2005), 385–447 | DOI | MR
[12] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642 ; arXiv: math/0312270 | DOI | MR | Zbl
[13] R. Koekoek, R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, http:// aw.twi.tudelft.nl/~koekoek/reports.html
[14] M. L. Metha, Random Matrices, 2nd edition, Academic Press, Boston, MA, 1991 | MR
[15] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR
[16] A. F. Nikiforov, S. K. Suslov, V. B. Uvarov, Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | MR | Zbl
[17] G. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 205:2 (2003), 464–524 ; arXiv: math/0109193 | DOI | MR | Zbl
[18] L. Petrov, A two-parameter family of infinite-dimensional diffusions in the Kingman simplex, arXiv: 0708.1930
[19] A. B. Soshnikov, “Determinantnye sluchainye tochechnye polya”, Uspekhi mat. nauk, 55:5 (2000), 107–160 | MR | Zbl
[20] C. A. Tracy, H. Widom, “Differential equations for Dyson processes”, Comm. Math. Phys., 252 (2004), 7–41 ; arXiv: math/0309082 | DOI | MR | Zbl
[21] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl