The adic realization of the Morse transformation and the extension of its action to the solenoid
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 70-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the adic realization of the Morse transformation on the additive group of integer dyadic numbers. We discuss the arithmetic properties of this action. Then we extend this action to an action of the group of rational dyadic numbers on the solenoid. Bibl. – 14 titles.
@article{ZNSL_2008_360_a2,
     author = {A. M. Vershik and B. Solomyak},
     title = {The adic realization of the {Morse} transformation and the extension of its action to the solenoid},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {70--90},
     year = {2008},
     volume = {360},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - B. Solomyak
TI  - The adic realization of the Morse transformation and the extension of its action to the solenoid
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 70
EP  - 90
VL  - 360
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a2/
LA  - ru
ID  - ZNSL_2008_360_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%A B. Solomyak
%T The adic realization of the Morse transformation and the extension of its action to the solenoid
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 70-90
%V 360
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a2/
%G ru
%F ZNSL_2008_360_a2
A. M. Vershik; B. Solomyak. The adic realization of the Morse transformation and the extension of its action to the solenoid. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 70-90. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a2/

[1] R. M. Belinskaya, “Razbieniya prostranstva Lebega na traektorii, opredelyaemye ergodicheskimi avtomorfizmami”, Funkts. anal. i ego pril., 2:3 (1968), 4–16 | MR | Zbl

[2] A. M. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, DAN SSSR, 259:3 (1981), 526–529 | MR | Zbl

[3] A. M. Vershik, “Lokalno transversalnaya simvolicheskaya dinamika”, Algebra i analiz, 6:3 (1994), 94–106 | MR | Zbl

[4] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR

[5] V. A. Rokhlin, “Tochnye endomorfizmy prostranstva Lebega”, Izv. AN SSSR. Ser. matem., 25:4 (1961), 499–530 | MR | Zbl

[6] J.-P. Allouche, J. Shallit, Automatic Sequences. Theory, Applications, Generalizations, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[7] V. I. Arnold, “Complexity of finite sequences of zeros and ones and geometry of finite spaces of functions”, Funct. Anal. Other Math., 1:1 (2006), 1–15 | DOI | MR

[8] F. Durand, B. Host, C. Skau, “Substitutional dynamical systems, Bratteli diagrams and dimension groups”, Ergodic Theory Dynam. Syst., 19 (1999), 953–993 | DOI | MR | Zbl

[9] A. Forrest, “$K$-groups associated with substitution minimal systems”, Israel J. Math., 98 (1997), 101–139 | DOI | MR | Zbl

[10] S. Kakutani, “Ergodic theory on shift transformations”, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, Univ. California Press, Berkeley, 1967, 405–414 | MR | Zbl

[11] Y. Moshe, “On the subword complexity of Thue–Morse polynomial extractions”, Theoret. Comput. Sci., 389:1–2 (2007), 318–329 | DOI | MR | Zbl

[12] N. Pytheas Fogg, “Substitutions in Dynamics, Arithmetics and Combinatorics”, Lect. Notes in Math., 1794, Springer-Verlag, Berlin, 2002 | MR | Zbl

[13] M. Queffelec, “Substitution Dynamical Systems – Spectral Analysis”, Lect. Notes in Math., 1294, Springer-Verlag, Berlin, 1987 | MR | Zbl

[14] A. M. Vershik, A. N. Livshits, “Adic models of ergodic transformations, spectral theory, and related topics”, Adv. Sov. Math., 9 (1992), 185–204 | MR | Zbl