Polynomial-time computation of the degree of a~dominant morphism in zero characteristic.~IV
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 260-294
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider a projective algebraic variety $W$ that is an irreducible component of the set of all common zeros of a family of homogeneous polynomials of degrees less than $d$ in $n+1$ variables in zero characteristic. Consider a dominant rational morphism from $W$ to $W'$ given by homogeneous polynomials of degree $d'$. We suggest algorithms for constructing objects in general position related to this morphism. These algorithms are deterministic and polynomial in $(dd')^n$ and the size of the input. This work concludes the series of three papers. Bibl. – 13 titles.
@article{ZNSL_2008_360_a12,
author = {A. L. Chistov},
title = {Polynomial-time computation of the degree of a~dominant morphism in zero {characteristic.~IV}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {260--294},
publisher = {mathdoc},
volume = {360},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a12/}
}
TY - JOUR AU - A. L. Chistov TI - Polynomial-time computation of the degree of a~dominant morphism in zero characteristic.~IV JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 260 EP - 294 VL - 360 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a12/ LA - ru ID - ZNSL_2008_360_a12 ER -
A. L. Chistov. Polynomial-time computation of the degree of a~dominant morphism in zero characteristic.~IV. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 260-294. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a12/