Polynomial-time computation of the degree of a~dominant morphism in zero characteristic.~IV
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 260-294

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a projective algebraic variety $W$ that is an irreducible component of the set of all common zeros of a family of homogeneous polynomials of degrees less than $d$ in $n+1$ variables in zero characteristic. Consider a dominant rational morphism from $W$ to $W'$ given by homogeneous polynomials of degree $d'$. We suggest algorithms for constructing objects in general position related to this morphism. These algorithms are deterministic and polynomial in $(dd')^n$ and the size of the input. This work concludes the series of three papers. Bibl. – 13 titles.
@article{ZNSL_2008_360_a12,
     author = {A. L. Chistov},
     title = {Polynomial-time computation of the degree of a~dominant morphism in zero {characteristic.~IV}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {260--294},
     publisher = {mathdoc},
     volume = {360},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a12/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - Polynomial-time computation of the degree of a~dominant morphism in zero characteristic.~IV
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 260
EP  - 294
VL  - 360
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a12/
LA  - ru
ID  - ZNSL_2008_360_a12
ER  - 
%0 Journal Article
%A A. L. Chistov
%T Polynomial-time computation of the degree of a~dominant morphism in zero characteristic.~IV
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 260-294
%V 360
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a12/
%G ru
%F ZNSL_2008_360_a12
A. L. Chistov. Polynomial-time computation of the degree of a~dominant morphism in zero characteristic.~IV. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 260-294. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a12/