@article{ZNSL_2008_360_a11,
author = {D. Talalaev and A. Chervov},
title = {KZ~equation, $G$-opers, quantum {Drinfeld{\textendash}Sokolov} reduction, and quantum {Cayley{\textendash}Hamilton} identity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {246--259},
year = {2008},
volume = {360},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a11/}
}
TY - JOUR AU - D. Talalaev AU - A. Chervov TI - KZ equation, $G$-opers, quantum Drinfeld–Sokolov reduction, and quantum Cayley–Hamilton identity JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 246 EP - 259 VL - 360 UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a11/ LA - ru ID - ZNSL_2008_360_a11 ER -
D. Talalaev; A. Chervov. KZ equation, $G$-opers, quantum Drinfeld–Sokolov reduction, and quantum Cayley–Hamilton identity. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 246-259. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a11/
[1] D. Talalaev, “Kvantovaya sistema Godena”, Funkts. anal. i ego pril., 40:1 (2006), 86–91 | MR | Zbl
[2] A. Chervov, D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, arXiv: hep-th/0604128
[3] M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | MR
[4] M. Adler, “On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de-Vries type equations”, Invent. Math., 50:3 (1979), 219–248 | DOI | MR | Zbl
[5] B. Kostant, Representation Theory of Lie Groups, Proc. SRC/LMS Res. Symp. (Oxford, 1977), London Math. Soc. Lecture Notes Ser., 34, 1979, 287–316 | MR | Zbl
[6] W. W. Symes, Invent. Math., 59 (1980), 13–51 | DOI | MR | Zbl
[7] V. G. Knizhnik, A. B. Zamolodchikov, “Current algebra and Wess–Zumino model in two dimensions”, Nuclear Phys. B, 247:1 (1984), 83–103 | DOI | MR | Zbl
[8] A. Chervov, D. Talalaev, Universal G-oper and Gaudin eigenproblem, arXiv: hep-th/0409007
[9] E. Frenkel, Affine Algebras, Langlands Duality and Bethe Ansatz, arXiv: q-alg/9506003 | MR
[10] E. Mukhin, V. Tarasov, A. Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz, arXiv: math.AG/0512299 | MR
[11] A. J. Bracken, H. S. Green, “Vector operators and a polynomial identity for $\operatorname{SO}(n)$”, J. Mathematical Phys., 12 (1971), 2099–2106 | DOI | MR
[12] M. D. Gould, J. Austral. Math. Soc. B, 26 (1985), 257–283 | DOI | MR | Zbl
[13] A. J. Macfarlane, H. Pfeiffer, On characteristic equations, trace identities and Casimir operators of simple Lie algebras, arXiv: math-ph/9907024 | MR
[14] A. P. Isaev, O. V. Ogievetsky, P. N. Pyatov, Cayley–Hamilton–Newton identities and quasitriangular Hopf algebras, arXiv: math/9912197
[15] D. I. Gurevich, P. N. Pyatov, P. A. Saponov, Cayley–Hamilton theorem for quantum matrix algebras of $GL(m|n)$ type, arXiv: math/0412192
[16] O. Ogievetsky, P. Pyatov, Orthogonal and Symplectic Quantum Matrix Algebras and Cayley–Hamilton Theorem for them, arXiv: math/0511618
[17] A. I. Molev, Yangians and their applications, arXiv: math.QA/0211288 | MR
[18] A. A. Kirillov, “Introduction to Family Algebras”, Moscow Math. J., 1:1 (2001), 49–63 | MR | Zbl
[19] I. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, J.-Y. Thibon, Noncommutative symmetric functions, arXiv: hep-th/9407124 | MR