KZ equation, $G$-opers, quantum Drinfeld–Sokolov reduction, and quantum Cayley–Hamilton identity
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 246-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Lax operator of the Gaudin-type models is a 1-form at the classical level. In virtue of the quantization scheme proposed by D. Talalaev, it is natural to treat the quantum Lax operator as a connection; this connection is a particular case of the Knizhnik–Zamolodchikov connection. In this paper we find a gauge transformation that produces the “second normal form” or the “Drinfeld–Sokolov” form. Moreover, the differential operator naturally corresponding to this form is given precisely by the quantum characteristic polynomial of the Lax operator (this operator is called the $G$-oper or Baxter operator). This observation allows us to relate solutions of the KZ and Baxter equations in an obvious way and to prove that the immanent KZ-equation has only meromorphic solutions. As a corollary, we obtain the quantum Cayley–Hamilton identity for the Gaudin-type Lax operators (including the general $\mathfrak{gl}_n[t]$ case). The presented construction sheds a new light on the geometric Langlands correspondence. We also discuss the relation with the Harish-Chandra homomorphism. Bibl. – 19 titles.
@article{ZNSL_2008_360_a11,
     author = {D. Talalaev and A. Chervov},
     title = {KZ~equation, $G$-opers, quantum {Drinfeld{\textendash}Sokolov} reduction, and quantum {Cayley{\textendash}Hamilton} identity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {246--259},
     year = {2008},
     volume = {360},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a11/}
}
TY  - JOUR
AU  - D. Talalaev
AU  - A. Chervov
TI  - KZ equation, $G$-opers, quantum Drinfeld–Sokolov reduction, and quantum Cayley–Hamilton identity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 246
EP  - 259
VL  - 360
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a11/
LA  - ru
ID  - ZNSL_2008_360_a11
ER  - 
%0 Journal Article
%A D. Talalaev
%A A. Chervov
%T KZ equation, $G$-opers, quantum Drinfeld–Sokolov reduction, and quantum Cayley–Hamilton identity
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 246-259
%V 360
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a11/
%G ru
%F ZNSL_2008_360_a11
D. Talalaev; A. Chervov. KZ equation, $G$-opers, quantum Drinfeld–Sokolov reduction, and quantum Cayley–Hamilton identity. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 246-259. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a11/

[1] D. Talalaev, “Kvantovaya sistema Godena”, Funkts. anal. i ego pril., 40:1 (2006), 86–91 | MR | Zbl

[2] A. Chervov, D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, arXiv: hep-th/0604128

[3] M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | MR

[4] M. Adler, “On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de-Vries type equations”, Invent. Math., 50:3 (1979), 219–248 | DOI | MR | Zbl

[5] B. Kostant, Representation Theory of Lie Groups, Proc. SRC/LMS Res. Symp. (Oxford, 1977), London Math. Soc. Lecture Notes Ser., 34, 1979, 287–316 | MR | Zbl

[6] W. W. Symes, Invent. Math., 59 (1980), 13–51 | DOI | MR | Zbl

[7] V. G. Knizhnik, A. B. Zamolodchikov, “Current algebra and Wess–Zumino model in two dimensions”, Nuclear Phys. B, 247:1 (1984), 83–103 | DOI | MR | Zbl

[8] A. Chervov, D. Talalaev, Universal G-oper and Gaudin eigenproblem, arXiv: hep-th/0409007

[9] E. Frenkel, Affine Algebras, Langlands Duality and Bethe Ansatz, arXiv: q-alg/9506003 | MR

[10] E. Mukhin, V. Tarasov, A. Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz, arXiv: math.AG/0512299 | MR

[11] A. J. Bracken, H. S. Green, “Vector operators and a polynomial identity for $\operatorname{SO}(n)$”, J. Mathematical Phys., 12 (1971), 2099–2106 | DOI | MR

[12] M. D. Gould, J. Austral. Math. Soc. B, 26 (1985), 257–283 | DOI | MR | Zbl

[13] A. J. Macfarlane, H. Pfeiffer, On characteristic equations, trace identities and Casimir operators of simple Lie algebras, arXiv: math-ph/9907024 | MR

[14] A. P. Isaev, O. V. Ogievetsky, P. N. Pyatov, Cayley–Hamilton–Newton identities and quasitriangular Hopf algebras, arXiv: math/9912197

[15] D. I. Gurevich, P. N. Pyatov, P. A. Saponov, Cayley–Hamilton theorem for quantum matrix algebras of $GL(m|n)$ type, arXiv: math/0412192

[16] O. Ogievetsky, P. Pyatov, Orthogonal and Symplectic Quantum Matrix Algebras and Cayley–Hamilton Theorem for them, arXiv: math/0511618

[17] A. I. Molev, Yangians and their applications, arXiv: math.QA/0211288 | MR

[18] A. A. Kirillov, “Introduction to Family Algebras”, Moscow Math. J., 1:1 (2001), 49–63 | MR | Zbl

[19] I. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, J.-Y. Thibon, Noncommutative symmetric functions, arXiv: hep-th/9407124 | MR