Cyclic polygons are critical points of area
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 238-245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is shown that typical critical points of the signed area function on the moduli space of a generic planar polygon are given by cyclic configurations, i.e., configurations that can be inscribed in a circle. Several related problems are briefly discussed in conclusion. Bibl. – 14 titles.
@article{ZNSL_2008_360_a10,
     author = {G. Panina and G. N. Khimshiashvili},
     title = {Cyclic polygons are critical points of area},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {238--245},
     year = {2008},
     volume = {360},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a10/}
}
TY  - JOUR
AU  - G. Panina
AU  - G. N. Khimshiashvili
TI  - Cyclic polygons are critical points of area
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 238
EP  - 245
VL  - 360
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a10/
LA  - en
ID  - ZNSL_2008_360_a10
ER  - 
%0 Journal Article
%A G. Panina
%A G. N. Khimshiashvili
%T Cyclic polygons are critical points of area
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 238-245
%V 360
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a10/
%G en
%F ZNSL_2008_360_a10
G. Panina; G. N. Khimshiashvili. Cyclic polygons are critical points of area. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 238-245. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a10/

[1] V. Arnold, A. Varchenko, S. Gusein-Zade, Singularities of Differentiable Mappings, Nauka, Moscow, 2005 (Russian)

[2] J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Springer, Berlin–Heidelberg–New York, 1998 | MR | Zbl

[3] R. Connelly, E. Demaine, “Geometry and Topology of Polygonal Linkages”, Handbook of Discrete and Computational Geometry, 2nd ed., CRC Press, Boca Raton, 2004, 197–218

[4] H. Coxeter, S. Greitzer, Geometry Revisited, Toronto–New York, 1967

[5] E. Elerdashvili, M. Jibladze, G. Khimshiashvili, “Cyclic configurations of pentagon linkages”, Bull. Georgian Nat. Acad. Sci., 2:4 (2008), 13–16 | MR

[6] M. Fedorchuk, I. Pak, “Rigidity and polynomial invariants of convex polytopes”, Duke Math. J., 129:2 (2005), 371–404 | DOI | MR | Zbl

[7] C. Gibson, P. Newstead, “On the geometry of the planar 4-bar mechanism”, Acta Applic. Math., 7 (1986), 113–135 | DOI | MR | Zbl

[8] M. Kapovich, J. Millson, “Universality theorems for configuration spaces of planar linkages”, Topology, 41 (2002), 1051–1107 | DOI | MR | Zbl

[9] A. Kempe, “A method of describing curves of the nth degree by linkwork”, Proc. London Math. Soc., 7 (1876), 213–216 | DOI

[10] G. Khimshiashvili, “On configuration spaces of planar pentagons”, Zap. Nauchn. Semin. POMI, 292, 2002, 120–129 | MR | Zbl

[11] G. Khimshiashvili, “Signature formulae and configuration spaces”, J. Math. Sci., 59 (2009), 10 pp., (in press)

[12] D. Robbins, “Areas of polygons inscribed in a circle”, Discrete Comput. Geom., 12 (1994), 223–236 | DOI | MR | Zbl

[13] W. Thurston, “Shapes of polyhedra and triangulations of the sphere”, Geom. Topol. Monogr., 1 (1998), 511–549 | DOI | MR | Zbl

[14] V. Varfolomeev, “Inscribed polygons and Heron polynomials”, Sb. Math., 194:3 (2003), 311–321 | DOI | MR