@article{ZNSL_2008_360_a10,
author = {G. Panina and G. N. Khimshiashvili},
title = {Cyclic polygons are critical points of area},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {238--245},
year = {2008},
volume = {360},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a10/}
}
G. Panina; G. N. Khimshiashvili. Cyclic polygons are critical points of area. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 238-245. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a10/
[1] V. Arnold, A. Varchenko, S. Gusein-Zade, Singularities of Differentiable Mappings, Nauka, Moscow, 2005 (Russian)
[2] J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Springer, Berlin–Heidelberg–New York, 1998 | MR | Zbl
[3] R. Connelly, E. Demaine, “Geometry and Topology of Polygonal Linkages”, Handbook of Discrete and Computational Geometry, 2nd ed., CRC Press, Boca Raton, 2004, 197–218
[4] H. Coxeter, S. Greitzer, Geometry Revisited, Toronto–New York, 1967
[5] E. Elerdashvili, M. Jibladze, G. Khimshiashvili, “Cyclic configurations of pentagon linkages”, Bull. Georgian Nat. Acad. Sci., 2:4 (2008), 13–16 | MR
[6] M. Fedorchuk, I. Pak, “Rigidity and polynomial invariants of convex polytopes”, Duke Math. J., 129:2 (2005), 371–404 | DOI | MR | Zbl
[7] C. Gibson, P. Newstead, “On the geometry of the planar 4-bar mechanism”, Acta Applic. Math., 7 (1986), 113–135 | DOI | MR | Zbl
[8] M. Kapovich, J. Millson, “Universality theorems for configuration spaces of planar linkages”, Topology, 41 (2002), 1051–1107 | DOI | MR | Zbl
[9] A. Kempe, “A method of describing curves of the nth degree by linkwork”, Proc. London Math. Soc., 7 (1876), 213–216 | DOI
[10] G. Khimshiashvili, “On configuration spaces of planar pentagons”, Zap. Nauchn. Semin. POMI, 292, 2002, 120–129 | MR | Zbl
[11] G. Khimshiashvili, “Signature formulae and configuration spaces”, J. Math. Sci., 59 (2009), 10 pp., (in press)
[12] D. Robbins, “Areas of polygons inscribed in a circle”, Discrete Comput. Geom., 12 (1994), 223–236 | DOI | MR | Zbl
[13] W. Thurston, “Shapes of polyhedra and triangulations of the sphere”, Geom. Topol. Monogr., 1 (1998), 511–549 | DOI | MR | Zbl
[14] V. Varfolomeev, “Inscribed polygons and Heron polynomials”, Sb. Math., 194:3 (2003), 311–321 | DOI | MR