Cyclic polygons are critical points of area
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 238-245

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that typical critical points of the signed area function on the moduli space of a generic planar polygon are given by cyclic configurations, i.e., configurations that can be inscribed in a circle. Several related problems are briefly discussed in conclusion. Bibl. – 14 titles.
@article{ZNSL_2008_360_a10,
     author = {G. Panina and G. N. Khimshiashvili},
     title = {Cyclic polygons are critical points of area},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {238--245},
     publisher = {mathdoc},
     volume = {360},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a10/}
}
TY  - JOUR
AU  - G. Panina
AU  - G. N. Khimshiashvili
TI  - Cyclic polygons are critical points of area
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 238
EP  - 245
VL  - 360
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a10/
LA  - en
ID  - ZNSL_2008_360_a10
ER  - 
%0 Journal Article
%A G. Panina
%A G. N. Khimshiashvili
%T Cyclic polygons are critical points of area
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 238-245
%V 360
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a10/
%G en
%F ZNSL_2008_360_a10
G. Panina; G. N. Khimshiashvili. Cyclic polygons are critical points of area. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 238-245. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a10/