Cyclic polygons are critical points of area
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 238-245
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that typical critical points of the signed area function on the moduli space of a generic planar polygon are given by cyclic configurations, i.e., configurations that can be inscribed in a circle. Several related problems are briefly discussed in conclusion. Bibl. – 14 titles.
@article{ZNSL_2008_360_a10,
author = {G. Panina and G. N. Khimshiashvili},
title = {Cyclic polygons are critical points of area},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {238--245},
publisher = {mathdoc},
volume = {360},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a10/}
}
G. Panina; G. N. Khimshiashvili. Cyclic polygons are critical points of area. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 238-245. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a10/