@article{ZNSL_2008_360_a1,
author = {S. Vakulenko and D. Grigoriev},
title = {Instability, complexity, and evolution},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {31--69},
year = {2008},
volume = {360},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a1/}
}
S. Vakulenko; D. Grigoriev. Instability, complexity, and evolution. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 31-69. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a1/
[1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4nd ed., Garland Publishing, Inc., New York, 2002
[2] J.-P. Aubin, A. Bayen, N. Bonneuil, P. Saint-Pierre, Viability, control and games: regulation of complex evolutionary systems under uncertainty and viability constraints, Springer-Verlag, 2005
[3] J.-P. Aubin, Mutational and morphological analysis: tools for shape regulation and morphogenesis, Birkhäuser, 2000 | MR
[4] J.-P. Aubin, Dynamic economic theory: a viability approach, Springer-Verlag, 1997 | MR | Zbl
[5] J.-P. Aubin, Neural networks and qualitative physics: a viability approach, Cambridge University Press, 1996 | MR | Zbl
[6] R. Albert, A. L. Barabási, “Statistical mechanics of complex networks”, Rev. Modern Physics, 74 (2002), 47–97 | DOI | MR | Zbl
[7] A. Barron, “Universal Approximation Bounds for superpositions of a sigmoidal functions”, IEEE Trans. Inf. Theory, 39 (1993), 930–945 | DOI | MR | Zbl
[8] R. Bhattacharya, M. Majumdar, Random Dynamical Systems. Theory and Applcations, Cambridge, 2007 | MR
[9] M. Benaim, N. El Karoui, Promenade aleatoire (Chaines de Markov et simulations; martingales et strategies), Les editions de l'école polytechnique, 2004 | Zbl
[10] S. Boucheron, O. Bousquet, G. Lucosi, “Theory of classification: survey of some recent advances”, ESAIM: Probability and Statistics, 9 (2005), 323–375 | DOI | MR | Zbl
[11] B. S. Cireltson, I. A. Ibragimov, V. N. Sudakov, “Norm of Gaussian sample function”, Proceedings of the 3rd Japan–U.S.S.R. Symposium on Probability Theory, Lect. Notes in Math., 550, Springer-Verlag, Berlin, 1976, 20–41 | MR
[12] T. H. Cormen, Charles E. Leiserson, L. Ronald, Rivest, and Cliff Stein, Introduction to Algorithms, 2nd ed., MIT Press, 2001 | MR | Zbl
[13] C. Deroulers, R. Monasson, “Criticality and universality in the unit-propagation search rule”, Eur. Phys. J., B49 (2006), 339
[14] C. Deroulers, R. Monasson, “Critical behaviour of combinatorial search algorithms, and the unitary-propagation universality class”, Europhys. Lett., 68 (2004), 153 | DOI
[15] V. M. Dilman, “Aging, Rate of Aging, and Cancer”, A Search for Preventive Treatment, Annals of the New York Academy of Sciences, 719, The Aging Clock: The Pineal Gland and Other Pacemakers in the Progression of Aging and Carci (1994), 454–455 | DOI
[16] R. Edwards, T. H. Siegelmann, K. Aziza, L. Glass, “Symbolic dynamics and computation in model gene networks”, Chaos, 11 (2001), 160–169 | DOI
[17] M. Eigen, P. Schuster, The Hypercycle: A Principle of Natural Self-Organization, Springer, Berlin, 1979 | Zbl
[18] P. Erdos, A. Rényi, “On the evolution of random graphs”, Publ. Math. Inst. Hungarian Academy of Sciences, 5 (1960), 17–61 | MR
[19] K. Funahashi, Y. Nakamura, “Approximation of Dynamical Systems by Continuous Time Recurrent Neural Networks”, Neural Networks, 6 (1993), 801–806 | DOI
[20] A. Gabrielov, N. Vorobjov, “Complexity of computations with Pfaffian and Noetherian functions”, Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, Kluwer, 2004, 211–250 | MR
[21] L. Glass, S. Kauffman, “The logical analysis of continuous, nonlinear biochemical control networks”, J. Theor. Biology, 34 (1973), 103–129 | DOI
[22] D. Grigoriev, N. Vorobjov, “Complexity Lower Bounds for Computation Trees with Elementary Transcendental Functions Gates”, Theoret. Comput. Sci., 157 (1996), 185–214 | DOI | MR | Zbl
[23] D. Grigoriev, “Deviation theorems for solutions of linear ordinary differential equations and applications to parallel complexity of sigmoids”, St. Petersburg Math. J., 6 (1995), 89–106 | MR
[24] D. Grigoriev, “Deviation theorems for Pfaffian sigmoids”, St. Petersburg Math. J., 6 (1995), 107–111 | MR
[25] D. Grigoriev, “Approximation and complexity: Liouvillean type theorems for linear differential equations on an interval”, Found. Computat. Math., 1 (2001), 289–295 | MR | Zbl
[26] D. Grigoriev, “Approximation and complexity. II. Iterated integration”, Found. Computat. Math., 2 (2002), 295–304 | DOI | MR | Zbl
[27] M. Gromov, A. Carbone, Mathematical slices of molecular biology, Preprint IHES/M/01/03, 2001 | MR
[28] J. K. Hale, J. K. La Salle, M. Slemrod, “Theory of a general class of dissipative process”, J. Math. Anal. Appl., 39 (1972), 177–191 | DOI | MR | Zbl
[29] L. H. Hartwell, J. J. Hopfield, S. Leibler, A. W. Murray, “From molecular to modular cell biology”, Nature (London), 402 (1999), C47–C52 | DOI
[30] R. Hecht-Nielsen, “Kolmogorov's mapping neural network existence theorem”, IEEE International Conference on Neural Networks, SOS Printing, San Diego, 1987, 11–14
[31] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes in Math., 840, Springer, New York–Heidleberg–Berlin, 1981 | MR | Zbl
[32] M. W. Hirsch, Differential topology, New York–Heidelberg–Berlin, 1976 | MR
[33] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities”, Proc. Natl. Acad. USA, 79 (1982), 2554–2558 | DOI | MR
[34] K. Hornik, M. Stinchcombe, H. White, “Multilayer feedforward networks are universal approximators”, Neural Networks, 2 (1989), 359–366 | DOI
[35] H. Jeong, B. Tombor, R. Albert, Z. N. Otvai, A. L. Barabási, “The large-scale organisation of metabolic networks”, Nature (London), 407 (2000), 651–654 | DOI
[36] Yu. Ilyashenko, Li Weigu, Nonlocal bifurcations, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[37] H. Jeong, S. P. Mason, A. L. Barabási, Z. N. Otvai, “Lethality and centrality in protein networks”, Nature (London), 411 (2000), 41–42 | DOI
[38] A. Khovanskii, Fewnomials, Transl. Math. Monographs, 88, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl
[39] P. Koiran, C. Moore, Closed-form analytic maps in one and two dimensions can simulate Turing machines, DIMACS Technical Report 96-25; Theoretical Computer Science, 210:1 (1999), 217–223 | DOI | MR | Zbl
[40] O. A. Ladyzenskaya, “On a dynamical system generated by Navier–Stokes equations”, Zap. Nauchn. Semin. LOMI, 27, 1972, 97–114
[41] C. Lobry, “Une proprieté generique des couples de champs de vecteurs”, Chechoslovak Math. J., 22(97) (1972), 230–237 | MR | Zbl
[42] Ming Li, P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications, 2nd ed., Springer-Verlag, 1997, xx+637pp. | MR
[43] A. L. Lehninger, D. L. Nelson, M. M. Cox, Principles of Biochemistry, 2nd ed., Worth, New York, 1993
[44] A. Lesne, “Complex networks: from graph theory to biology”, Lett. Math. Phys., 78 (2006), 235–262 | DOI | MR | Zbl
[45] H. Meinhardt, Mathematical Models for Biological Pattern Formation, IMA Volumes in Mathematics and its Applications, 121, eds. P. K. Maini, H. G. Othmer, Springer, New York–Berlin–Heidelberg, 2000 | MR | Zbl
[46] L. Mendoza, E. R. Alvarez-Buylla, “Dynamics of Genetic Regulatory Networks for Arabodopsis thaliana Flower Morphogenesis”, J. Theor. Biol., 193 (1998), 307–319 | DOI
[47] E. Mjolness, D. H. Sharp, J. Reinitz, “A connectionist Model of Development”, J. Theor. Biol., 152 (1991), 429–453 | DOI
[48] J. D. Murray, Mathematical Biology, Springer, New York–Berlin–Heidelberg, 1993 | MR
[49] C. H. Papadimitriou, K. Steglitz, Combinatorial optimization, Algorithms and Complexity, Prentice Hall, Inc., Englewood Cliffs, NJ, 1982 | MR | Zbl
[50] J. Reinitz, D. H. Sharp, “Mechanism of formation of eve stripes”, Mechanisms of Development, 49 (1995), 133–158 | DOI
[51] M. Ridley, Evolution, 2nd ed., Blokwell Scientific Publications Ltd., Oxford, 1996
[52] D. Ruelle, Elements of differentiable dynamics and bifurcation theory, Acad. Press, Boston, 1989 | MR | Zbl
[53] I. Salazar-Ciudad, J. Garcia-Fernadez, R. V. Solé, “Gene Networks Capable of Pattern Formation: From Induction to Reaction-Diffusion”, J. Theor Biology, 205 (2000), 587–603 | DOI
[54] S. Smale, Mathematics of Time, Springer, New York, 1980 | MR | Zbl
[55] P. Smolen, D. Baxter, J. H. Byrne, “Mathematical modelling of gene networks”, Review Neuron, 25 (2000), 247–292
[56] H. J. Sussmann, “A general theorem on local contollability”, SIAM J. Control and Optimization, 25:1 (1987), 158–194 | DOI | MR | Zbl
[57] M. Talagrand, “Concentration of measure and isoperimetric inequalities in product spaces”, Inst. Hautes Études Sci. Publ. Math., 81 (1995), 73–205 | DOI | MR | Zbl
[58] M. Talagrand, “New concentration inequalities in product spaces”, Invent. Math., 126 (1996), 505–563 | DOI | MR | Zbl
[59] R. Temam, Infinite dimensional system in mechanics and physics, Springer-Verlag, New York, 1998 | Zbl
[60] D. Thieffry, R. Thomas, “Dynamical behaviour of biological regulatory networks. II. Immunity control in bacteriophage lambda”, Bull. Math. Biology, 57 (1995), 277–295
[61] R. Thom, Stabilité structurelle et morphogénèse, Benjamin, New York, 1972 | MR
[62] A. M. Turing, “The chemical basis of morphogenesis”, Phil. Trans. Roy. Soc. B, 237 (1952), 37–72 | DOI
[63] S. Vakulenko, S. Genieys, “Patterning by genetic networks”, Mathematical Methods in Applied Sciences, 29 (2005), 173–190 | MR
[64] S. Vakulenko, D. Grigoriev, “Algorithms and complexity in biological pattern formation problems”, Annales of Pure and Applied Logic, 141 (2006), 421–428 | MR
[65] S. Vakulenko, D. Grigoriev, “Evolution in random environment and structural stability”, J. Math. Sci., 138 (2006), 5644–5662 | DOI | MR
[66] S. Vakulenko, D. Grigoriev, “Stable growth of complex systems”, Proceeding of Fifth Workshop on Simulation, St. Petersburg, 2005, 705–709
[67] S. Vakulenko, D. Grigoriev, “Complexity of gene circuits, Pfaffian functions and the morphogenesis problem”, C. R. Acad. Sci. Ser. I, 337 (2003), 721–724 | MR | Zbl
[68] S. Vakulenko, S. Genieys, “Pattern programming by genetic networks, Patterns and Waves”, Patterns and waves, Collection of papers, eds. A. Abramian, S. Vakulenko, V. Volpert, St. Petersburg, 2003, 346–365 | MR
[69] S. A. Vakulenko, “Dissipative systems generating any structurally stable chaos”, Adv. Diff. Equations, 5 (2000), 1139–1178 | MR | Zbl
[70] L. Van Valen, “A new evolutionary law”, Evolutionary Theory, 1 (1973), 1–30
[71] L. Valiant, “Evolvibility”, Lect. Notes Comput. Sci., 4708, 2007, 22–43 | MR | Zbl
[72] L. G. Valiant, “A theory of learnable”, Comm. ACM, 27 (1984), 1134–1142 | DOI | Zbl
[73] A. D. Ventsel, M. I. Freidlin, Random Perturbations of Dynamic systems, Springer, New York, 1984 | MR
[74] A. M. Vershik, F. V. Petrov, Invariant measures on the set of graphs and homogeneous uncountable universal graphs, PDMI preprint 08/2008, 2008 | MR
[75] B. L. van der Waerden, Modern Algebra, Vol. 1, Ungar, New York, 1953
[76] M. Blum, “A machine-independent theory of the complexity of recursive functions”, J. Assoc. Comput. Machin., 14 (1967), 322–336 | MR | Zbl
[77] E. Friedgut, “Sharp thresholds of graph properties, and the $k$-SAT problem”, J. Amer. Math. Soc., 12:4 (1999), 1017–1054 | DOI | MR | Zbl
[78] L. Wolpert, R. Beddington, T. Jessell, P. Lawrence, E. Meyerowitz, J. Smith, Principles of Development, Oxford University Press, 2002
[79] M. K. S. Yeung, J. Tegner, J. J. Collins, “Reverse engineering gene networks using singular decomposition and robust regression”, Proceeding of Nat. Acad. Sci., 99, 2002, 6163–6168
[80] A. K. Zvonkin, L. A. Levin, “The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms”, Russ. Math. Surv., 25:6 (1970), 83–124 | DOI | MR | Zbl