Form factors, plane partitions and random walks
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 5-30

Voir la notice de l'article provenant de la source Math-Net.Ru

An exactly solvable boson model, the so-called “phase model,” is considered. A relation between certain transition matrix elements of this model and boxed plane partitions, three-dimensional Young diagrams placed into a box of finite size, is established. It is shown that the natural model describing the behavior of friendly walkers, ones that can share the same lattice sites, is the “phase model.” An expression for the number of all admissible nests of lattice paths made by a fixed number of friendly walkers for a certain number of steps is obtained. Bibl. – 35 titles.
@article{ZNSL_2008_360_a0,
     author = {N. M. Bogoliubov},
     title = {Form factors, plane partitions and random walks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--30},
     publisher = {mathdoc},
     volume = {360},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a0/}
}
TY  - JOUR
AU  - N. M. Bogoliubov
TI  - Form factors, plane partitions and random walks
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 5
EP  - 30
VL  - 360
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a0/
LA  - en
ID  - ZNSL_2008_360_a0
ER  - 
%0 Journal Article
%A N. M. Bogoliubov
%T Form factors, plane partitions and random walks
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 5-30
%V 360
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a0/
%G en
%F ZNSL_2008_360_a0
N. M. Bogoliubov. Form factors, plane partitions and random walks. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 5-30. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a0/