@article{ZNSL_2008_360_a0,
author = {N. M. Bogoliubov},
title = {Form factors, plane partitions and random walks},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--30},
year = {2008},
volume = {360},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a0/}
}
N. M. Bogoliubov. Form factors, plane partitions and random walks. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 5-30. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a0/
[1] V. Korepin, P. Zinn-Justin, “Thermodynamic limit of the six-vertex model with domain wall boundary conditions”, J. Phys. A, 33 (2000), 7053 | DOI | MR | Zbl
[2] A. V. Razumov, Yu. G. Stroganov, “Spin chains and combinatorics”, J. Phys. A, 34 (2001), 3185 | DOI | MR | Zbl
[3] M. T. Batchelor, J. de Gier, B. Nienhuis, “The quantum symmetric XXZ chain at $\Delta=-1/2$, alternating sign matrices and plane partitions”, J. Phys. A, 34 (2001), L265 | DOI | MR | Zbl
[4] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A, 35 (2002), 5525 | DOI | MR | Zbl
[5] F. Colomo, A. G. Pronko, “Square ice, alternating sign matrices and classical orthogonal polynomials”, J. Stat. Mech., 0501 (2005), P01005 | DOI | MR
[6] L. D. Faddeev, “Quantum inverse scattering method”, Sov. Sci. Rev. Math., C1 (1980), 107 | Zbl
[7] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Springer Lect. Notes Phys., 151, Springer, Berlin–New York, 1981, 61 | MR
[8] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[9] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A Math. Gen., 38 (2005), 9415 | DOI | MR | Zbl
[10] N. M. Bogoliubov, “Enumeration of plane partitions and algebraic Bethe ansatz”, Theor. Mat. Phys., 150 (2007), 165 | DOI | MR | Zbl
[11] G. E. Andrews, The Theory of Partitions, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl
[12] D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[13] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford Univ. Press, New York, 1995 | MR | Zbl
[14] A. Vershik, “Statistical mechanics of combinatorial partitions and their limit configurations”, Funct. Anal. Appl., 30 (1996), 90 | DOI | MR | Zbl
[15] A. Vershik, S. Kerov, “Asymptotics of the Plancherel measure of the symmetric group and the limit form of Young tableaux”, Soviet Math. Dokl., 18 (1977), 527 | Zbl
[16] A. Okounkov, N. Reshetikhin, “Correlation function of Schur process with application to local geometry of a random three-dimensional Young diagram”, J. Amer. Math. Soc., 16 (2003), 58 | DOI | MR
[17] N. M. Bogoliubov, R. K. Bullough, G. D. Pang, “Exact solution of the $q$-boson hopping model”, Phys. Rev. B, 47 (1993), 11495 | DOI
[18] N. M. Bogoliubov, R. K. Bullough, J. Timonen, “Critical behavior for correlated strongly coupled boson systems in $1+1$-dimensions”, Phys. Rev. Lett., 25 (1994), 3933 | DOI | MR | Zbl
[19] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, “Correlation functions for a strongly correlated boson systems”, Nucl. Phys. B, 516 (1998), 501 | DOI | MR | Zbl
[20] N. Tsilevich, “Quantum inverse scattering method for the $q$-boson model and symmetric functions”, Funct. Anal. Appl., 40 (2006), 53 | DOI | MR | Zbl
[21] K. Shigechi, M. Uchiyama, “Boxed skew plane partition and integrable phase model”, J. Phys. A Math. Gen., 38 (2005), 10287 | DOI | MR | Zbl
[22] M. E. Fisher, “Walks, walls, wetting and melting”, J. Stat. Phys., 34 (1984), 667 | DOI | MR | Zbl
[23] P. J. Forrester, “Exact solution of the lock step model of vicious walkers”, J. Phys. A Math. Gen., 23 (1990), 1259 | DOI | MR | Zbl
[24] T. H. Baker, P. J. Forrester, “Random walks and random fixed-point free involutions”, J. Phys. A Math. Gen., 34 (2001), L381 | DOI | MR | Zbl
[25] P. J. Forrester, “Random walks and random permutations”, J. Phys. A Math. Gen., 34 (2001), L417 | DOI | MR | Zbl
[26] A. J. Guttmann, A. L. Owczarec, X. G. Viennot, “Vicious walkers and Young tableaux. I. Without walls”, J. Phys. A Math. Gen., 31 (1998), 8123 | DOI | MR | Zbl
[27] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux. II. With a wall”, J. Phys. A Math. Gen., 33 (2000), 8835 | DOI | MR | Zbl
[28] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux. III. Between two walls”, J. Stat. Phys., 110 (2003), 1069 | DOI | MR | Zbl
[29] T. Tsuchiya, M. Katori, “Chiral Potts models, friendly walkers and directed percolation problem”, J. Phys. Soc. Japan, 67 (1988), 1655
[30] M. Katori, H. Tanemura, “Scaling limit of vicious walks and two-matrix model”, Phys. Rev. E, 66 (2002), 011105 | DOI
[31] M. Katori, H. Tanemura, T. Nagao, N. Komatsuda, “Vicious walk with a wall, noncolliding meanders, chiral and Bogoliubov–de Gennes random matrices”, Phys. Rev. E, 68 (2003), 021112 | DOI
[32] N. M. Bogoliubov, “$XXO$ Heisenberg chain and random walks”, Zap. Nauchn. Semin. POMI, 325, 2005, 13 | MR | Zbl
[33] N. M. Bogoliubov, “Integrable models for the vicious and friendly walkers”, Zap. Nauchn. Semin. POMI, 335, 2006, 59 | MR | Zbl
[34] P. Carruters, M. Nieto, “Phase and angle variables in quantum mechanics”, Rev. Mod. Phys., 40 (1968), 411 | DOI
[35] G. Kuperberg, “Another proof of the alternating-sign matrix conjecture”, Int. Math. Res. Not., 1996 (1996), 139 | DOI | MR | Zbl