Form factors, plane partitions and random walks
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 5-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An exactly solvable boson model, the so-called “phase model,” is considered. A relation between certain transition matrix elements of this model and boxed plane partitions, three-dimensional Young diagrams placed into a box of finite size, is established. It is shown that the natural model describing the behavior of friendly walkers, ones that can share the same lattice sites, is the “phase model.” An expression for the number of all admissible nests of lattice paths made by a fixed number of friendly walkers for a certain number of steps is obtained. Bibl. – 35 titles.
@article{ZNSL_2008_360_a0,
     author = {N. M. Bogoliubov},
     title = {Form factors, plane partitions and random walks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--30},
     year = {2008},
     volume = {360},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a0/}
}
TY  - JOUR
AU  - N. M. Bogoliubov
TI  - Form factors, plane partitions and random walks
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 5
EP  - 30
VL  - 360
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a0/
LA  - en
ID  - ZNSL_2008_360_a0
ER  - 
%0 Journal Article
%A N. M. Bogoliubov
%T Form factors, plane partitions and random walks
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 5-30
%V 360
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a0/
%G en
%F ZNSL_2008_360_a0
N. M. Bogoliubov. Form factors, plane partitions and random walks. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamics systems, combinatorial methods. Part XVI, Tome 360 (2008), pp. 5-30. http://geodesic.mathdoc.fr/item/ZNSL_2008_360_a0/

[1] V. Korepin, P. Zinn-Justin, “Thermodynamic limit of the six-vertex model with domain wall boundary conditions”, J. Phys. A, 33 (2000), 7053 | DOI | MR | Zbl

[2] A. V. Razumov, Yu. G. Stroganov, “Spin chains and combinatorics”, J. Phys. A, 34 (2001), 3185 | DOI | MR | Zbl

[3] M. T. Batchelor, J. de Gier, B. Nienhuis, “The quantum symmetric XXZ chain at $\Delta=-1/2$, alternating sign matrices and plane partitions”, J. Phys. A, 34 (2001), L265 | DOI | MR | Zbl

[4] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A, 35 (2002), 5525 | DOI | MR | Zbl

[5] F. Colomo, A. G. Pronko, “Square ice, alternating sign matrices and classical orthogonal polynomials”, J. Stat. Mech., 0501 (2005), P01005 | DOI | MR

[6] L. D. Faddeev, “Quantum inverse scattering method”, Sov. Sci. Rev. Math., C1 (1980), 107 | Zbl

[7] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Springer Lect. Notes Phys., 151, Springer, Berlin–New York, 1981, 61 | MR

[8] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[9] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A Math. Gen., 38 (2005), 9415 | DOI | MR | Zbl

[10] N. M. Bogoliubov, “Enumeration of plane partitions and algebraic Bethe ansatz”, Theor. Mat. Phys., 150 (2007), 165 | DOI | MR | Zbl

[11] G. E. Andrews, The Theory of Partitions, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[12] D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[13] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford Univ. Press, New York, 1995 | MR | Zbl

[14] A. Vershik, “Statistical mechanics of combinatorial partitions and their limit configurations”, Funct. Anal. Appl., 30 (1996), 90 | DOI | MR | Zbl

[15] A. Vershik, S. Kerov, “Asymptotics of the Plancherel measure of the symmetric group and the limit form of Young tableaux”, Soviet Math. Dokl., 18 (1977), 527 | Zbl

[16] A. Okounkov, N. Reshetikhin, “Correlation function of Schur process with application to local geometry of a random three-dimensional Young diagram”, J. Amer. Math. Soc., 16 (2003), 58 | DOI | MR

[17] N. M. Bogoliubov, R. K. Bullough, G. D. Pang, “Exact solution of the $q$-boson hopping model”, Phys. Rev. B, 47 (1993), 11495 | DOI

[18] N. M. Bogoliubov, R. K. Bullough, J. Timonen, “Critical behavior for correlated strongly coupled boson systems in $1+1$-dimensions”, Phys. Rev. Lett., 25 (1994), 3933 | DOI | MR | Zbl

[19] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, “Correlation functions for a strongly correlated boson systems”, Nucl. Phys. B, 516 (1998), 501 | DOI | MR | Zbl

[20] N. Tsilevich, “Quantum inverse scattering method for the $q$-boson model and symmetric functions”, Funct. Anal. Appl., 40 (2006), 53 | DOI | MR | Zbl

[21] K. Shigechi, M. Uchiyama, “Boxed skew plane partition and integrable phase model”, J. Phys. A Math. Gen., 38 (2005), 10287 | DOI | MR | Zbl

[22] M. E. Fisher, “Walks, walls, wetting and melting”, J. Stat. Phys., 34 (1984), 667 | DOI | MR | Zbl

[23] P. J. Forrester, “Exact solution of the lock step model of vicious walkers”, J. Phys. A Math. Gen., 23 (1990), 1259 | DOI | MR | Zbl

[24] T. H. Baker, P. J. Forrester, “Random walks and random fixed-point free involutions”, J. Phys. A Math. Gen., 34 (2001), L381 | DOI | MR | Zbl

[25] P. J. Forrester, “Random walks and random permutations”, J. Phys. A Math. Gen., 34 (2001), L417 | DOI | MR | Zbl

[26] A. J. Guttmann, A. L. Owczarec, X. G. Viennot, “Vicious walkers and Young tableaux. I. Without walls”, J. Phys. A Math. Gen., 31 (1998), 8123 | DOI | MR | Zbl

[27] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux. II. With a wall”, J. Phys. A Math. Gen., 33 (2000), 8835 | DOI | MR | Zbl

[28] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux. III. Between two walls”, J. Stat. Phys., 110 (2003), 1069 | DOI | MR | Zbl

[29] T. Tsuchiya, M. Katori, “Chiral Potts models, friendly walkers and directed percolation problem”, J. Phys. Soc. Japan, 67 (1988), 1655

[30] M. Katori, H. Tanemura, “Scaling limit of vicious walks and two-matrix model”, Phys. Rev. E, 66 (2002), 011105 | DOI

[31] M. Katori, H. Tanemura, T. Nagao, N. Komatsuda, “Vicious walk with a wall, noncolliding meanders, chiral and Bogoliubov–de Gennes random matrices”, Phys. Rev. E, 68 (2003), 021112 | DOI

[32] N. M. Bogoliubov, “$XXO$ Heisenberg chain and random walks”, Zap. Nauchn. Semin. POMI, 325, 2005, 13 | MR | Zbl

[33] N. M. Bogoliubov, “Integrable models for the vicious and friendly walkers”, Zap. Nauchn. Semin. POMI, 335, 2006, 59 | MR | Zbl

[34] P. Carruters, M. Nieto, “Phase and angle variables in quantum mechanics”, Rev. Mod. Phys., 40 (1968), 411 | DOI

[35] G. Kuperberg, “Another proof of the alternating-sign matrix conjecture”, Int. Math. Res. Not., 1996 (1996), 139 | DOI | MR | Zbl