@article{ZNSL_2008_359_a8,
author = {L. Yu. Kolotilina},
title = {Inclusion sets for the singular values of a~rectangular matrix},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {94--105},
year = {2008},
volume = {359},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a8/}
}
L. Yu. Kolotilina. Inclusion sets for the singular values of a rectangular matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 94-105. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a8/
[1] L. Yu. Kolotilina, “Otsenki singulyarnykh znachenii, uchityvayuschie strukturu razrezhennosti matritsy”, Zap. nauchn. semin. POMI, 323, POMI, SPb., 2005, 57–68 | MR | Zbl
[2] L. Yu. Kolotilina, “Mnozhestva, soderzhaschie singulyarnyi spektr kvadratnoi matritsy”, Zap. nauchn. semin. POMI, 359, POMI, SPb., 2008, 52–77 | MR
[3] L. Yu. Kolotilina, “O konturnykh mnozhestvakh, soderzhaschikh singulyarnyi spektr kvadratnoi matritsy”, Zap. nauchn. semin. POMI, 359, POMI, SPb., 2008, 78–93 | MR
[4] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[5] C. R. Johnson, “A Gersgorin-type lower bound for the smallest singular value”, Linear Algebra Appl., 112 (1989), 1–7 | DOI | MR | Zbl
[6] C. R. Johnson, T. Szulc, “Further lower bounds for the smallest singular value”, Linear Algebra Appl., 272 (1998), 169–179 | DOI | MR | Zbl
[7] H.-B. Li, T.-Z. Huang, H. Li, “Inclusion sets for singular values”, Linear Algebra Appl., 428 (2008), 2220–2235 | DOI | MR | Zbl
[8] H.-B. Li, T.-Z. Huang, H. Li, S.-Q. Shen, “Optimal Gerschgorin-type inclusion intervals of singular values”, Numer. Linear Algebra Appl., 14 (2007), 115–128 | DOI | MR | Zbl
[9] J. S. Li, K. Yang, Q.-X. Wang, “Digraphs and inclusion intervals of Brualdi-type for singular values”, Acta Math. Appl. Sin., 18 (2002), 471–476 | DOI | MR | Zbl
[10] L. Li, “The undirected graph and estimates of matrix singular values”, Linear Algebra Appl., 285 (1998), 181–188 | DOI | MR | Zbl
[11] L. L. Li, “Estimation for matrix singular values”, Comput. Math. Appl., 37 (1999), 9–15 | MR
[12] W. Li, Q. Chang, “Inclusion intervals of singular values and applications”, Comput. Math. Appl., 45 (2003), 1637–1646 | DOI | MR | Zbl
[13] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964 | MR | Zbl
[14] L. Qi, “Some simple estimates for singular values of a matrix”, Linear Algebra Appl., 56 (1984), 105–119 | DOI | MR | Zbl