Inclusion sets for the singular values of a rectangular matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 94-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper generalizes certain inclusion sets for the singular values of a square matrix to the case of an $m\times n$ matrix. In particular, it is shown that under a nonrestrictive assumption on the ordering of the matrix columns (if $m) or the matrix rows (if $m>n$), a natural counterpart of the Gerschgorin theorem on the eigenvalue location is valid. Bibl. – 14 titles.
@article{ZNSL_2008_359_a8,
     author = {L. Yu. Kolotilina},
     title = {Inclusion sets for the singular values of a~rectangular matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--105},
     year = {2008},
     volume = {359},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a8/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Inclusion sets for the singular values of a rectangular matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 94
EP  - 105
VL  - 359
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a8/
LA  - ru
ID  - ZNSL_2008_359_a8
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Inclusion sets for the singular values of a rectangular matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 94-105
%V 359
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a8/
%G ru
%F ZNSL_2008_359_a8
L. Yu. Kolotilina. Inclusion sets for the singular values of a rectangular matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 94-105. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a8/

[1] L. Yu. Kolotilina, “Otsenki singulyarnykh znachenii, uchityvayuschie strukturu razrezhennosti matritsy”, Zap. nauchn. semin. POMI, 323, POMI, SPb., 2005, 57–68 | MR | Zbl

[2] L. Yu. Kolotilina, “Mnozhestva, soderzhaschie singulyarnyi spektr kvadratnoi matritsy”, Zap. nauchn. semin. POMI, 359, POMI, SPb., 2008, 52–77 | MR

[3] L. Yu. Kolotilina, “O konturnykh mnozhestvakh, soderzhaschikh singulyarnyi spektr kvadratnoi matritsy”, Zap. nauchn. semin. POMI, 359, POMI, SPb., 2008, 78–93 | MR

[4] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[5] C. R. Johnson, “A Gersgorin-type lower bound for the smallest singular value”, Linear Algebra Appl., 112 (1989), 1–7 | DOI | MR | Zbl

[6] C. R. Johnson, T. Szulc, “Further lower bounds for the smallest singular value”, Linear Algebra Appl., 272 (1998), 169–179 | DOI | MR | Zbl

[7] H.-B. Li, T.-Z. Huang, H. Li, “Inclusion sets for singular values”, Linear Algebra Appl., 428 (2008), 2220–2235 | DOI | MR | Zbl

[8] H.-B. Li, T.-Z. Huang, H. Li, S.-Q. Shen, “Optimal Gerschgorin-type inclusion intervals of singular values”, Numer. Linear Algebra Appl., 14 (2007), 115–128 | DOI | MR | Zbl

[9] J. S. Li, K. Yang, Q.-X. Wang, “Digraphs and inclusion intervals of Brualdi-type for singular values”, Acta Math. Appl. Sin., 18 (2002), 471–476 | DOI | MR | Zbl

[10] L. Li, “The undirected graph and estimates of matrix singular values”, Linear Algebra Appl., 285 (1998), 181–188 | DOI | MR | Zbl

[11] L. L. Li, “Estimation for matrix singular values”, Comput. Math. Appl., 37 (1999), 9–15 | MR

[12] W. Li, Q. Chang, “Inclusion intervals of singular values and applications”, Comput. Math. Appl., 45 (2003), 1637–1646 | DOI | MR | Zbl

[13] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964 | MR | Zbl

[14] L. Qi, “Some simple estimates for singular values of a matrix”, Linear Algebra Appl., 56 (1984), 105–119 | DOI | MR | Zbl