Inclusion sets for the singular values of a~square matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 52-77
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper presents a general approach to deriving various inclusion sets for the singular values of a matrix $A=(a_{ij})\in\mathbb C^{n\times n}$. The key to the approach is the following result: If $\sigma$ is a singular value of $A$, then a certain matrix $C(\sigma,A)$ of order $2n$, whose diagonal entries are $\sigma^2-|a_{ii}|^2$, $i=1,\dots,n$, is singular. Based on this result, we use known diagonal-dominance type nonsingularity conditions to obtain inclusion sets for the singular values of $A$. Scaled versions of the inclusion sets, allowing one, in particular, to obtain Ky Fan type results for the singular values, are derived by passing to the conjugated matrix $D^{-1}C(\sigma,A)D$, where $D$ is a positive-definite diagonal matrix. Bibl. – 16 titles.
@article{ZNSL_2008_359_a6,
author = {L. Yu. Kolotilina},
title = {Inclusion sets for the singular values of a~square matrix},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {52--77},
publisher = {mathdoc},
volume = {359},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a6/}
}
L. Yu. Kolotilina. Inclusion sets for the singular values of a~square matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 52-77. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a6/