On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 45-51

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the product $C$ of two skew-Hamiltonian matrices obeys the Stenzel conditions. If at least one of the factors is nonsingular, then the Stenzel conditions amount to the requirement that every elementary divisor for a nonzero eigenvalue of $C$ occurs an even number of times. The same properties are valid for the product of two skew-pseudosymmetric matrices. We observe that the method proposed by Van Loan for computing the eigenvalues of real Hamiltonian and skew-Hamiltonian matrices can be extended to complex skew-Hamiltonian matrices. Finally, we show that the computation of the eigenvalues of a product of two skew-symmetric matrices can be reduced to computing the eigenvalues of a similar skew-Hamiltonian matrix. Bibl. – 8 titles.
@article{ZNSL_2008_359_a5,
     author = {Kh. D. Ikramov and H. Fassbender},
     title = {On the product of two {skew-Hamiltonian} matrices or two skew-symmetric matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--51},
     publisher = {mathdoc},
     volume = {359},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - H. Fassbender
TI  - On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 45
EP  - 51
VL  - 359
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a5/
LA  - ru
ID  - ZNSL_2008_359_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A H. Fassbender
%T On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 45-51
%V 359
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a5/
%G ru
%F ZNSL_2008_359_a5
Kh. D. Ikramov; H. Fassbender. On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 45-51. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a5/