@article{ZNSL_2008_359_a5,
author = {Kh. D. Ikramov and H. Fassbender},
title = {On the product of two {skew-Hamiltonian} matrices or two skew-symmetric matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {45--51},
year = {2008},
volume = {359},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a5/}
}
Kh. D. Ikramov; H. Fassbender. On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 45-51. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a5/
[1] C. F. Van Loan, “A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix”, Linear Algebra Appl., 16 (1984), 233–251 | DOI | MR
[2] M. P. Drazin, “A note on skew-symmetric matrices”, Math. Gazette, 36 (1952), 253–255 | DOI | MR | Zbl
[3] B. D. O. Anderson, “Orthogonal decompositions defined by a pair of skew-symmetric forms”, Linear Algebra Appl., 8 (1974), 91–93 | DOI | MR | Zbl
[4] R. Gow, T. J. Laffey, “Pairs of alternating forms and products of two skew-symmetric matrices”, Linear Algebra Appl., 63 (1984), 119–132 | DOI | MR | Zbl
[5] D. Z. Djokovic, “On the product of two alternating matrices”, Amer. Math. Monthly, 98 (1991), 935–936 | DOI | MR | Zbl
[6] L. Rodman, “Products of symmetric and skew-symmetric matrices”, Linear Multilinear Algebra, 43 (1997), 19–34 | DOI | MR | Zbl
[7] H. Stenzel, “Über die Darstellbarkeit einer Matrix als Produkt von zwei symmetrischer Matrizen, als Produkt von zwei alternierenden Matrizen und als Produkt von einer symmetrischen und einer alternierenden Matrix”, Math. Z., 15 (1922), 1–25 | DOI | MR | Zbl
[8] J. R. Bunch, “A note on the stable decomposition of skew-symmetric matrices”, Math. Comput., 38(158) (1982), 475–479 | DOI | MR | Zbl