On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 45-51
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the product $C$ of two skew-Hamiltonian matrices obeys the Stenzel conditions. If at least one of the factors is nonsingular, then the Stenzel conditions amount to the requirement that every elementary divisor for a nonzero eigenvalue of $C$ occurs an even number of times. The same properties are valid for the product of two skew-pseudosymmetric matrices. We observe that the method proposed by Van Loan for computing the eigenvalues of real Hamiltonian and skew-Hamiltonian matrices can be extended to complex skew-Hamiltonian matrices. Finally, we show that the computation of the eigenvalues of a product of two skew-symmetric matrices can be reduced to computing the eigenvalues of a similar skew-Hamiltonian matrix. Bibl. – 8 titles.
@article{ZNSL_2008_359_a5,
author = {Kh. D. Ikramov and H. Fassbender},
title = {On the product of two {skew-Hamiltonian} matrices or two skew-symmetric matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {45--51},
publisher = {mathdoc},
volume = {359},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a5/}
}
TY - JOUR AU - Kh. D. Ikramov AU - H. Fassbender TI - On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 45 EP - 51 VL - 359 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a5/ LA - ru ID - ZNSL_2008_359_a5 ER -
Kh. D. Ikramov; H. Fassbender. On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 45-51. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a5/