On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 45-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show that the product $C$ of two skew-Hamiltonian matrices obeys the Stenzel conditions. If at least one of the factors is nonsingular, then the Stenzel conditions amount to the requirement that every elementary divisor for a nonzero eigenvalue of $C$ occurs an even number of times. The same properties are valid for the product of two skew-pseudosymmetric matrices. We observe that the method proposed by Van Loan for computing the eigenvalues of real Hamiltonian and skew-Hamiltonian matrices can be extended to complex skew-Hamiltonian matrices. Finally, we show that the computation of the eigenvalues of a product of two skew-symmetric matrices can be reduced to computing the eigenvalues of a similar skew-Hamiltonian matrix. Bibl. – 8 titles.
@article{ZNSL_2008_359_a5,
     author = {Kh. D. Ikramov and H. Fassbender},
     title = {On the product of two {skew-Hamiltonian} matrices or two skew-symmetric matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--51},
     year = {2008},
     volume = {359},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - H. Fassbender
TI  - On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 45
EP  - 51
VL  - 359
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a5/
LA  - ru
ID  - ZNSL_2008_359_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A H. Fassbender
%T On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 45-51
%V 359
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a5/
%G ru
%F ZNSL_2008_359_a5
Kh. D. Ikramov; H. Fassbender. On the product of two skew-Hamiltonian matrices or two skew-symmetric matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 45-51. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a5/

[1] C. F. Van Loan, “A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix”, Linear Algebra Appl., 16 (1984), 233–251 | DOI | MR

[2] M. P. Drazin, “A note on skew-symmetric matrices”, Math. Gazette, 36 (1952), 253–255 | DOI | MR | Zbl

[3] B. D. O. Anderson, “Orthogonal decompositions defined by a pair of skew-symmetric forms”, Linear Algebra Appl., 8 (1974), 91–93 | DOI | MR | Zbl

[4] R. Gow, T. J. Laffey, “Pairs of alternating forms and products of two skew-symmetric matrices”, Linear Algebra Appl., 63 (1984), 119–132 | DOI | MR | Zbl

[5] D. Z. Djokovic, “On the product of two alternating matrices”, Amer. Math. Monthly, 98 (1991), 935–936 | DOI | MR | Zbl

[6] L. Rodman, “Products of symmetric and skew-symmetric matrices”, Linear Multilinear Algebra, 43 (1997), 19–34 | DOI | MR | Zbl

[7] H. Stenzel, “Über die Darstellbarkeit einer Matrix als Produkt von zwei symmetrischer Matrizen, als Produkt von zwei alternierenden Matrizen und als Produkt von einer symmetrischen und einer alternierenden Matrix”, Math. Z., 15 (1922), 1–25 | DOI | MR | Zbl

[8] J. R. Bunch, “A note on the stable decomposition of skew-symmetric matrices”, Math. Comput., 38(158) (1982), 475–479 | DOI | MR | Zbl