Decomplexification of eigenvalue and coneigenvalue problems
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 36-41

Voir la notice de l'article provenant de la source Math-Net.Ru

The decomplexification technique proposed for coneigenvalue problems in a recent paper by T. Jiang et al. is discussed and compared with the classical decomplexification technique for eigenvalue problems. Simple explanations of both techniques are presented, and their properties concerning special matrix classes are indicated. Bibl. – 4 titles.
@article{ZNSL_2008_359_a3,
     author = {Kh. D. Ikramov},
     title = {Decomplexification of eigenvalue and coneigenvalue problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--41},
     publisher = {mathdoc},
     volume = {359},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a3/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Decomplexification of eigenvalue and coneigenvalue problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 36
EP  - 41
VL  - 359
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a3/
LA  - ru
ID  - ZNSL_2008_359_a3
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Decomplexification of eigenvalue and coneigenvalue problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 36-41
%V 359
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a3/
%G ru
%F ZNSL_2008_359_a3
Kh. D. Ikramov. Decomplexification of eigenvalue and coneigenvalue problems. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 36-41. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a3/