An error bound of the Ritz method for a~singular second-order differential equation
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 208-215
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper presents an error bound of the Ritz method for the problem of minimizing the functional
$$
J(u)=\int^1_0[u'(t)]^2\,dt+\int^1_0q(t)u^2(t)\,dt-2\int_0^1f(t)u(t)\,dt
$$ 
in the space $\overset\circ{W^1_2}(0,1)$ in the case where the standard assumption on the continuity of $q(t)$ is replaced by the condition $q^2(t)t(1-t)\in L(0,1)$. In the case where $q(t)$ is continuous, the new bound is sharper than the known one. Bibl. – 5 titles.
			
            
            
            
          
        
      @article{ZNSL_2008_359_a13,
     author = {M. N. Yakovlev},
     title = {An error bound of the {Ritz} method for a~singular second-order differential equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {208--215},
     publisher = {mathdoc},
     volume = {359},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a13/}
}
                      
                      
                    M. N. Yakovlev. An error bound of the Ritz method for a~singular second-order differential equation. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 208-215. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a13/