An error bound of the Ritz method for a~singular second-order differential equation
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 208-215

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents an error bound of the Ritz method for the problem of minimizing the functional $$ J(u)=\int^1_0[u'(t)]^2\,dt+\int^1_0q(t)u^2(t)\,dt-2\int_0^1f(t)u(t)\,dt $$ in the space $\overset\circ{W^1_2}(0,1)$ in the case where the standard assumption on the continuity of $q(t)$ is replaced by the condition $q^2(t)t(1-t)\in L(0,1)$. In the case where $q(t)$ is continuous, the new bound is sharper than the known one. Bibl. – 5 titles.
@article{ZNSL_2008_359_a13,
     author = {M. N. Yakovlev},
     title = {An error bound of the {Ritz} method for a~singular second-order differential equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {208--215},
     publisher = {mathdoc},
     volume = {359},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a13/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - An error bound of the Ritz method for a~singular second-order differential equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 208
EP  - 215
VL  - 359
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a13/
LA  - ru
ID  - ZNSL_2008_359_a13
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T An error bound of the Ritz method for a~singular second-order differential equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 208-215
%V 359
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a13/
%G ru
%F ZNSL_2008_359_a13
M. N. Yakovlev. An error bound of the Ritz method for a~singular second-order differential equation. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 208-215. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a13/