Asymptotic decompositions for coordinate splines
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 17-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Asymptotic decompositions for coordinate splines are investigated based on the properties of a multilinear function introduced in the paper. Bibl. – 3 titles.
@article{ZNSL_2008_359_a1,
     author = {Yu. K. Dem'yanovich},
     title = {Asymptotic decompositions for coordinate splines},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--30},
     year = {2008},
     volume = {359},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a1/}
}
TY  - JOUR
AU  - Yu. K. Dem'yanovich
TI  - Asymptotic decompositions for coordinate splines
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 17
EP  - 30
VL  - 359
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a1/
LA  - ru
ID  - ZNSL_2008_359_a1
ER  - 
%0 Journal Article
%A Yu. K. Dem'yanovich
%T Asymptotic decompositions for coordinate splines
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 17-30
%V 359
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a1/
%G ru
%F ZNSL_2008_359_a1
Yu. K. Dem'yanovich. Asymptotic decompositions for coordinate splines. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 17-30. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a1/

[1] G. Mülbach, “Construction of $B$-splines defined by divided differences”, J. Comput. Appl. Math., 187 (2006), 96–122 | DOI | MR

[2] Yu. K. Demyanovich, “Minimalnye splainy i vspleski”, Vestnik SPbGU. Ser. 1. Matem., mekh., astron., 2008, no. 2, 8–22

[3] I. G. Burova, Yu. K. Demyanovich, “O splainakh maksimalnoi gladkosti”, Vestnik SPbGU. Ser. 1. Matem., mekh., astron., 2005, no. 4, 3–11