The Perron–Frobenius theorem – a proof with the use of Markov chains
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Perron–Frobenius theorem for an irreducible nonnegative matrix is proved using the matrix graph and the ergodic theorem of the theory of Markov chains. Bibl. – 7 titles.
@article{ZNSL_2008_359_a0,
     author = {Yu. A. Al'pin and V. S. Al'pina},
     title = {The {Perron{\textendash}Frobenius} theorem~{\textendash} a~proof with the use of {Markov} chains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--16},
     year = {2008},
     volume = {359},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a0/}
}
TY  - JOUR
AU  - Yu. A. Al'pin
AU  - V. S. Al'pina
TI  - The Perron–Frobenius theorem – a proof with the use of Markov chains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 5
EP  - 16
VL  - 359
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a0/
LA  - ru
ID  - ZNSL_2008_359_a0
ER  - 
%0 Journal Article
%A Yu. A. Al'pin
%A V. S. Al'pina
%T The Perron–Frobenius theorem – a proof with the use of Markov chains
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 5-16
%V 359
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a0/
%G ru
%F ZNSL_2008_359_a0
Yu. A. Al'pin; V. S. Al'pina. The Perron–Frobenius theorem – a proof with the use of Markov chains. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a0/

[1] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR

[2] H. Mink, Nonnegative Matrices, Wiley, New York etc., 1988 | MR

[3] E. Seneta, Non-negative Matrices and Markov Chains, Springer, New York, 2006 | MR | Zbl

[4] V. Romanovsky, “Un théorème sur les zéros des matrices non négatives”, Bull. Soc. Math. France, 61 (1933), 213–219 | MR | Zbl

[5] V. I. Romanovskii, Diskretnye tsepi Markova, Gostekhizdat, M., 1949

[6] Dzh. Kemeni, Dzh. Snell, Konechnye tsepi Markova, Nauka, M., 1970

[7] A. N. Shiryaev, Veroyatnost-1, MTsNMO, M., 2004