The Perron–Frobenius theorem – a proof with the use of Markov chains
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 5-16
Voir la notice du chapitre de livre
The Perron–Frobenius theorem for an irreducible nonnegative matrix is proved using the matrix graph and the ergodic theorem of the theory of Markov chains. Bibl. – 7 titles.
@article{ZNSL_2008_359_a0,
author = {Yu. A. Al'pin and V. S. Al'pina},
title = {The {Perron{\textendash}Frobenius} theorem~{\textendash} a~proof with the use of {Markov} chains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--16},
year = {2008},
volume = {359},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a0/}
}
Yu. A. Al'pin; V. S. Al'pina. The Perron–Frobenius theorem – a proof with the use of Markov chains. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a0/
[1] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR
[2] H. Mink, Nonnegative Matrices, Wiley, New York etc., 1988 | MR
[3] E. Seneta, Non-negative Matrices and Markov Chains, Springer, New York, 2006 | MR | Zbl
[4] V. Romanovsky, “Un théorème sur les zéros des matrices non négatives”, Bull. Soc. Math. France, 61 (1933), 213–219 | MR | Zbl
[5] V. I. Romanovskii, Diskretnye tsepi Markova, Gostekhizdat, M., 1949
[6] Dzh. Kemeni, Dzh. Snell, Konechnye tsepi Markova, Nauka, M., 1970
[7] A. N. Shiryaev, Veroyatnost-1, MTsNMO, M., 2004