The Perron–Frobenius theorem – a proof with the use of Markov chains
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 5-16
Cet article a éte moissonné depuis la source Math-Net.Ru
The Perron–Frobenius theorem for an irreducible nonnegative matrix is proved using the matrix graph and the ergodic theorem of the theory of Markov chains. Bibl. – 7 titles.
@article{ZNSL_2008_359_a0,
author = {Yu. A. Al'pin and V. S. Al'pina},
title = {The {Perron{\textendash}Frobenius} theorem~{\textendash} a~proof with the use of {Markov} chains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--16},
year = {2008},
volume = {359},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a0/}
}
Yu. A. Al'pin; V. S. Al'pina. The Perron–Frobenius theorem – a proof with the use of Markov chains. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a0/
[1] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR
[2] H. Mink, Nonnegative Matrices, Wiley, New York etc., 1988 | MR
[3] E. Seneta, Non-negative Matrices and Markov Chains, Springer, New York, 2006 | MR | Zbl
[4] V. Romanovsky, “Un théorème sur les zéros des matrices non négatives”, Bull. Soc. Math. France, 61 (1933), 213–219 | MR | Zbl
[5] V. I. Romanovskii, Diskretnye tsepi Markova, Gostekhizdat, M., 1949
[6] Dzh. Kemeni, Dzh. Snell, Konechnye tsepi Markova, Nauka, M., 1970
[7] A. N. Shiryaev, Veroyatnost-1, MTsNMO, M., 2004