Borel reducibility as an additive property of domains
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 189-198

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that under certain requirements if $\mathrm E$ and $\mathrm F$ are Borel equivalence relations, $X=\bigcup_nX_n$ is a countable union of Borel sets, and $\mathrm E\upharpoonright X_n$ is Borel reducible to $\mathrm F$ for all $n$ then $\mathrm E\upharpoonright X$ is Borel reducible to $\mathrm F$. Thus the property of Borel reducibility to $\mathrm F$ is countably additive as a property of domains. Bibl. – 18 titles.
@article{ZNSL_2008_358_a9,
     author = {V. G. Kanovei and V. A. Lyubetskii},
     title = {Borel reducibility as an additive property of domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {189--198},
     publisher = {mathdoc},
     volume = {358},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a9/}
}
TY  - JOUR
AU  - V. G. Kanovei
AU  - V. A. Lyubetskii
TI  - Borel reducibility as an additive property of domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 189
EP  - 198
VL  - 358
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a9/
LA  - ru
ID  - ZNSL_2008_358_a9
ER  - 
%0 Journal Article
%A V. G. Kanovei
%A V. A. Lyubetskii
%T Borel reducibility as an additive property of domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 189-198
%V 358
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a9/
%G ru
%F ZNSL_2008_358_a9
V. G. Kanovei; V. A. Lyubetskii. Borel reducibility as an additive property of domains. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 189-198. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a9/