Borel reducibility as an additive property of domains
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 189-198
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that under certain requirements if $\mathrm E$ and $\mathrm F$ are Borel equivalence relations, $X=\bigcup_nX_n$ is a countable union of Borel sets, and $\mathrm E\upharpoonright X_n$ is Borel reducible to $\mathrm F$ for all $n$ then $\mathrm E\upharpoonright X$ is Borel reducible to $\mathrm F$. Thus the property of Borel reducibility to $\mathrm F$ is countably additive as a property of domains. Bibl. – 18 titles.
@article{ZNSL_2008_358_a9,
author = {V. G. Kanovei and V. A. Lyubetskii},
title = {Borel reducibility as an additive property of domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {189--198},
publisher = {mathdoc},
volume = {358},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a9/}
}
V. G. Kanovei; V. A. Lyubetskii. Borel reducibility as an additive property of domains. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 189-198. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a9/