Borel reducibility as an additive property of domains
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 189-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that under certain requirements if $\mathrm E$ and $\mathrm F$ are Borel equivalence relations, $X=\bigcup_nX_n$ is a countable union of Borel sets, and $\mathrm E\upharpoonright X_n$ is Borel reducible to $\mathrm F$ for all $n$ then $\mathrm E\upharpoonright X$ is Borel reducible to $\mathrm F$. Thus the property of Borel reducibility to $\mathrm F$ is countably additive as a property of domains. Bibl. – 18 titles.
@article{ZNSL_2008_358_a9,
     author = {V. G. Kanovei and V. A. Lyubetskii},
     title = {Borel reducibility as an additive property of domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {189--198},
     year = {2008},
     volume = {358},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a9/}
}
TY  - JOUR
AU  - V. G. Kanovei
AU  - V. A. Lyubetskii
TI  - Borel reducibility as an additive property of domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 189
EP  - 198
VL  - 358
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a9/
LA  - ru
ID  - ZNSL_2008_358_a9
ER  - 
%0 Journal Article
%A V. G. Kanovei
%A V. A. Lyubetskii
%T Borel reducibility as an additive property of domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 189-198
%V 358
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a9/
%G ru
%F ZNSL_2008_358_a9
V. G. Kanovei; V. A. Lyubetskii. Borel reducibility as an additive property of domains. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 189-198. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a9/

[1] A. M. Vershik, “Traektornaya teoriya”, Dinamicheskie sistemy – 2, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, ed. Ya. G. Sinai, VINITI, Moskva, 1985, 89–106

[2] V. G. Kanovei, “Dobavlenie. Proektivnaya ierarkhiya Luzina: sovremennoe sostoyanie teorii”, Spravochnaya kniga po matematicheskoi logike. Chast II. Teoriya mnozhestv, ed. K. Dzh. Baruaiz, Nauka, Moskva, 1982, 273–364 | MR

[3] V. G. Kanovei, “Topologii porozhdennye effektivno suslinskimi mnozhestvami i ikh prilozheniya v deskriptivnoi teorii mnozhestv”, UMN, 51:3(309) (1996), 17–52 | MR | Zbl

[4] V. G. Kanovei, V. A. Lyubetskii, “O nekotorykh klassicheskikh problemakh deskriptivnoi teorii mnozhestv”, UMN, 58:5(353) (2003), 3–88 | MR | Zbl

[5] V. G. Kanovei, V. A. Lyubetskii, Sovremennaya teoriya mnozhestv: nachala deskriptivnoi dinamiki, Nauka, Moskva, 2007 | MR | Zbl

[6] V. G. Kanovei, M. Reeken, “Nekotorye novye rezultaty o borelevskoi nesvodimosti otnoshenii ekvivalentnosti”, Izvestiya RAN. Cer. matem., 67:1 (2003), 59–82 | MR | Zbl

[7] E. A. Schegolkov, “Ob uniformizatsii nekotorykh $B$-mnozhestv”, Doklady AN SSSR, 59 (1948), 1065–1068 | MR

[8] J. Burgess, D. Miller, “Remarks on invariant descriptive set theory”, Fund. Math., 90:1 (1975), 53–75 | MR | Zbl

[9] R. Dougherty, S. Jackson, A. S. Kechris, “The structure of hyperfinite Borel equivalence relations”, Trans. Amer. Math. Soc., 341:1 (1994), 193–225 | DOI | MR | Zbl

[10] Su Gao, “Equivalence relations and classical Banach spaces”, Mathematical Logic in Asia, Proceedings of the 9th Asian Logic Conference (Novosibirsk, Russia, 16–19 August 2005), 70–89 | MR | Zbl

[11] L. A. Harrington, A. S. Kechris, A. Louveau, “A Glimm–Effros dichotomy for Borel equivalence relations”, J. Amer. Math. Soc., 3:4 (1990), 903–928 | DOI | MR | Zbl

[12] G. Hjorth, “Actions by the classical Banach spaces”, J. Symbolic Logic, 65:1 (2000), 392–420 | DOI | MR | Zbl

[13] G. Hjorth, A. S. Kechris, “Recent developments in the theory of Borel reducibility”, Fund. Math., 170:1–2 (2001), 21–52 | DOI | MR | Zbl

[14] G. Hjorth, A. S. Kechris, Rigidity theorems for actions of product groups and countable Borel equivalence relations, Mem. Amer. Math. Soc., 177, No 833, 2005, viii+109 | MR

[15] A. S. Kechris, Classical descriptive set theory, Springer-Verlag, New York, 1995 | MR | Zbl

[16] A. S. Kechris, A. Louveau, “The classification of hypersmooth Borel equivalence relations”, J. Amer. Math. Soc., 10:1 (1997), 215–242 | DOI | MR | Zbl

[17] S. M. Srivastava, “Selection and representation theorems for $\sigma$-compact valued multifunctions”, Proc. Amer. Math. Soc., 83:4 (1981), 775–780 | DOI | MR | Zbl

[18] S. Thomas, “Some applications of superrigidity to Borel equivalence relations”, Set Theory (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 58, Amer. Math. Soc., Providence, RI, 2002, 129–134 | MR | Zbl