@article{ZNSL_2008_358_a9,
author = {V. G. Kanovei and V. A. Lyubetskii},
title = {Borel reducibility as an additive property of domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {189--198},
year = {2008},
volume = {358},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a9/}
}
V. G. Kanovei; V. A. Lyubetskii. Borel reducibility as an additive property of domains. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 189-198. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a9/
[1] A. M. Vershik, “Traektornaya teoriya”, Dinamicheskie sistemy – 2, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, ed. Ya. G. Sinai, VINITI, Moskva, 1985, 89–106
[2] V. G. Kanovei, “Dobavlenie. Proektivnaya ierarkhiya Luzina: sovremennoe sostoyanie teorii”, Spravochnaya kniga po matematicheskoi logike. Chast II. Teoriya mnozhestv, ed. K. Dzh. Baruaiz, Nauka, Moskva, 1982, 273–364 | MR
[3] V. G. Kanovei, “Topologii porozhdennye effektivno suslinskimi mnozhestvami i ikh prilozheniya v deskriptivnoi teorii mnozhestv”, UMN, 51:3(309) (1996), 17–52 | MR | Zbl
[4] V. G. Kanovei, V. A. Lyubetskii, “O nekotorykh klassicheskikh problemakh deskriptivnoi teorii mnozhestv”, UMN, 58:5(353) (2003), 3–88 | MR | Zbl
[5] V. G. Kanovei, V. A. Lyubetskii, Sovremennaya teoriya mnozhestv: nachala deskriptivnoi dinamiki, Nauka, Moskva, 2007 | MR | Zbl
[6] V. G. Kanovei, M. Reeken, “Nekotorye novye rezultaty o borelevskoi nesvodimosti otnoshenii ekvivalentnosti”, Izvestiya RAN. Cer. matem., 67:1 (2003), 59–82 | MR | Zbl
[7] E. A. Schegolkov, “Ob uniformizatsii nekotorykh $B$-mnozhestv”, Doklady AN SSSR, 59 (1948), 1065–1068 | MR
[8] J. Burgess, D. Miller, “Remarks on invariant descriptive set theory”, Fund. Math., 90:1 (1975), 53–75 | MR | Zbl
[9] R. Dougherty, S. Jackson, A. S. Kechris, “The structure of hyperfinite Borel equivalence relations”, Trans. Amer. Math. Soc., 341:1 (1994), 193–225 | DOI | MR | Zbl
[10] Su Gao, “Equivalence relations and classical Banach spaces”, Mathematical Logic in Asia, Proceedings of the 9th Asian Logic Conference (Novosibirsk, Russia, 16–19 August 2005), 70–89 | MR | Zbl
[11] L. A. Harrington, A. S. Kechris, A. Louveau, “A Glimm–Effros dichotomy for Borel equivalence relations”, J. Amer. Math. Soc., 3:4 (1990), 903–928 | DOI | MR | Zbl
[12] G. Hjorth, “Actions by the classical Banach spaces”, J. Symbolic Logic, 65:1 (2000), 392–420 | DOI | MR | Zbl
[13] G. Hjorth, A. S. Kechris, “Recent developments in the theory of Borel reducibility”, Fund. Math., 170:1–2 (2001), 21–52 | DOI | MR | Zbl
[14] G. Hjorth, A. S. Kechris, Rigidity theorems for actions of product groups and countable Borel equivalence relations, Mem. Amer. Math. Soc., 177, No 833, 2005, viii+109 | MR
[15] A. S. Kechris, Classical descriptive set theory, Springer-Verlag, New York, 1995 | MR | Zbl
[16] A. S. Kechris, A. Louveau, “The classification of hypersmooth Borel equivalence relations”, J. Amer. Math. Soc., 10:1 (1997), 215–242 | DOI | MR | Zbl
[17] S. M. Srivastava, “Selection and representation theorems for $\sigma$-compact valued multifunctions”, Proc. Amer. Math. Soc., 83:4 (1981), 775–780 | DOI | MR | Zbl
[18] S. Thomas, “Some applications of superrigidity to Borel equivalence relations”, Set Theory (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 58, Amer. Math. Soc., Providence, RI, 2002, 129–134 | MR | Zbl