Fuzzy constructive logic
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 130-152

Voir la notice de l'article provenant de la source Math-Net.Ru

A logical system where the principles of fuzzy logic are interpreted from the point of view of the constructive approach is introduced. The language of predicate formulas without functional symbols and symbols of constants is considered. The notion of identically true predicate formula in the framework of the introduced logic is defined; two variants of this definition are given. Theorems concerning identically true predicate formulas are proved. Some connections between the introduced logic and the constructive (intuitionistic) predicate calculus are established. Bibl. – 40 titles.
@article{ZNSL_2008_358_a7,
     author = {I. D. Zaslavsky},
     title = {Fuzzy constructive logic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {130--152},
     publisher = {mathdoc},
     volume = {358},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a7/}
}
TY  - JOUR
AU  - I. D. Zaslavsky
TI  - Fuzzy constructive logic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 130
EP  - 152
VL  - 358
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a7/
LA  - ru
ID  - ZNSL_2008_358_a7
ER  - 
%0 Journal Article
%A I. D. Zaslavsky
%T Fuzzy constructive logic
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 130-152
%V 358
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a7/
%G ru
%F ZNSL_2008_358_a7
I. D. Zaslavsky. Fuzzy constructive logic. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 130-152. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a7/