Fuzzy constructive logic
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 130-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A logical system where the principles of fuzzy logic are interpreted from the point of view of the constructive approach is introduced. The language of predicate formulas without functional symbols and symbols of constants is considered. The notion of identically true predicate formula in the framework of the introduced logic is defined; two variants of this definition are given. Theorems concerning identically true predicate formulas are proved. Some connections between the introduced logic and the constructive (intuitionistic) predicate calculus are established. Bibl. – 40 titles.
@article{ZNSL_2008_358_a7,
     author = {I. D. Zaslavsky},
     title = {Fuzzy constructive logic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {130--152},
     year = {2008},
     volume = {358},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a7/}
}
TY  - JOUR
AU  - I. D. Zaslavsky
TI  - Fuzzy constructive logic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 130
EP  - 152
VL  - 358
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a7/
LA  - ru
ID  - ZNSL_2008_358_a7
ER  - 
%0 Journal Article
%A I. D. Zaslavsky
%T Fuzzy constructive logic
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 130-152
%V 358
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a7/
%G ru
%F ZNSL_2008_358_a7
I. D. Zaslavsky. Fuzzy constructive logic. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 130-152. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a7/

[1] I. D. Zaslavskii, “O konstruktivnoi istinnosti suzhdenii i nekotorykh netraditsionnykh sistemakh konstruktivnoi logiki”, Matematicheskie voprosy kibernetiki i vychislitelnoi tekhniki, Trudy VTs AN Arm. SSR i EGU, 8, 1975, 99–153 | MR | Zbl

[2] I. D. Zaslavskii, “Formalnye aksiomaticheskie teorii na osnove trekhznachnoi logiki”, Zap. nauchn. semin. POMI, 304, POMI, SPb., 2003, 19–74 | MR

[3] B. A. Kushner, Lektsii po konstruktivnomu matematicheskomu analizu, Nauka, M., 1973 | MR | Zbl

[4] A. I. Maltsev, Algoritmy i rekursivnye funktsii, 2-e izd., Nauka, M., 1986 | MR

[5] S. N. Manukyan, “O perechislimykh predikatakh i sekventsialnykh ischisleniyakh nechetkoi logiki”, 9-ya Vsesoyuznaya konferentsiya po matematicheskoi logike, Tezisy dokladov, Leningrad, 1988, 100

[6] S. N. Manukyan, “O predstavlenii nechetkikh rekursivno perechislimykh mnozhestv”, 11-ya Mezhrespublikanskaya konferentsiya po matematicheskoi logike, Tezisy dokladov, Kazan, 1992, 94

[7] S. N. Manukyan, “O strukture nechetkikh rekursivno perechislimykh mnozhestv”, Matematicheskie voprosy kibernetiki i vychislitelnoi tekhniki, Trudy Instituta problem informatiki i avtomatizatsii, 17, 1997, 86–91

[8] S. N. Manukyan, “Nekotorye algebry rekursivno perechislimykh mnozhestv i ikh prilozheniya k nechetkoi logike”, Zap. nauchn. semin. POMI, 304, POMI, SPb., 2003, 75–98 | MR

[9] A. A. Markov, “Konstruktivnaya logika”, Uspekhi matem. nauk, 5:3(37) (1950), 187–188 | MR

[10] A. A. Markov, “Ob odnom printsipe konstruktivnoi matematicheskoi logiki”, Trudy 3-go Vsesoyuznogo matem. s'ezda, T. 2, 1956, 146–147

[11] A. A. Markov, “O konstruktivnoi matematike”, Trudy MIAN, 67, Nauka, M., 1962, 8–14 | MR

[12] A. A. Markov, O logike konstruktivnoi matematiki, Znanie, M., 1972

[13] P. S. Novikoff, “On the consistency of certain logical calculus”, Matem. sb., 12(54) (1943), 231–261 | MR | Zbl

[14] P. K. Rashevskii, “O dogmate naturalnogo ryada”, Uspekhi matem. nauk, 28:4(172) (1973), 243–246 | MR | Zbl

[15] G. S. Tseitin, “Odin sposob izlozheniya teorii algoritmov i perechislimykh mnozhestv”, Trudy MIAN, 72, Nauka, M., 1964, 69–98

[16] N. A. Shanin, “O konstruktivnom ponimanii matematicheskikh suzhdenii”, Trudy MIAN, 52, Nauka, M., 1958, 226–311 | MR | Zbl

[17] N. A. Shanin, “Konstruktivnye veschestvennye chisla i konstruktivnye funktsionalnye prostranstva”, Trudy MIAN, 67, Nauka, M., 1962, 15–294

[18] N. A. Shanin, “Ob ierarkhii sposobov ponimaniya suzhdenii v konstruktivnoi matematike”, Trudy MIAN, 129, Nauka, M., 1974, 203–266

[19] L. E. J. Brouwer, “Intuitionism and formalizm”, Bull. Amer. Math. Soc., 20 (1913), 81–96 | DOI | MR | Zbl

[20] H. B. Enderton, A Mathematical Introduction to Logic, 2nd edition, Academic Press, San Diego–Harcourt, 2001 | MR | Zbl

[21] P. Hajek, Metamathematics of Fuzzy Logic, Kluwer, Dordrecht, 1998 | MR | Zbl

[22] A. Heyting, Intuitionism. An Introduction, North-Hall. Publ. Comp., Amsterdam, 1956 | MR | Zbl

[23] S. C. Kleene, “On the interpretation of intuitionistic number theory”, J. Symb. Logic, 10:4 (1945), 109–123 | DOI | MR

[24] S. C. Kleene, Introduction to Metamathematics, D. van Nostrand Comp., Inc., New York–Toronto, 1952 | MR

[25] The Foundations of Intuituonistic Mathematics especially in relation to recursive functions, North-Hall. Publ. Comp., Amsterdam, 1965 | MR

[26] H. R. Lewis, C. H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, Upper Saddle River, NJ, 1998 | Zbl

[27] S. N. Manukian, “On some properties of recursively enumerable fuzzy sets”, Proceedings of the Conference “Computer Science and Information Technologies” CSIT-99 (August, 1999), Yerevan, Armenia, 1999, 5–6

[28] S. N. Manukian, “Algorithmic operators on recursively enumerable fuzzy sets”, Proceedings of the Conference “Computer Science and Information Technologies” CSIT-01 (September, 2001), Yerevan, Armenia, 2001, 125–126

[29] S. N. Manukian, “On binary recursively enumerable fuzzy sets”, International Conference “21st Days of Weak Arithmetics”, Abstracts (St. Petersburg, Russia, June, 2002), St. Petersburg, 2002, 13–15

[30] S. N. Manukian, “Algebras of Recursively Enumerable Sets and their Applications to Fuzzy Logic”, J. Math. Sci., 130:2 (2005), 4598–4606 | DOI | MR | Zbl

[31] E. Mendelson, Introduction to Mathematical Logic, D. van Nostrand Comp., Inc., Princeton–Toronto–New York–London, 1964 | MR

[32] V. Novak, Fuzzy sets and their applications, Adam Hilger, Bristol, 1989 | MR | Zbl

[33] H. Rogers, Theory of Recursive Functions and Effective Computability, Mc. Graw Hill Book Comp., New York–St. Louis–San Francisco–Toronto–London–Sydney, 1967 | MR

[34] G. Rose, “Propositional calculus and realizability”, Trans. Amer. Math. Soc., 75 (1953), 1–19 | DOI | MR | Zbl

[35] E. Specker, “Nicht konstructive beweisbare Satze der Analysis”, J. Symb. Logic, 14:3 (1949), 145–158 | DOI | MR | Zbl

[36] G. Takeuti, Proof Theory, North-Holl. Publ. Comp., Amsterdam–London; American Elsevier Publ. Comp., Inc., New York, 1975 | MR | Zbl

[37] A. S. Troelstra, H. Schwichtenberg, Basic Proof Theory, Cambridge Univ. Press, Cambridge–New York, 2000 | MR | Zbl

[38] J. Yen, R. Langari, Fuzzy Logic, Intelligence, Control, and Information, Prentice Hall, Upper Saddle River, NJ, 1999 | Zbl

[39] L. Zadeh, “Fuzzy sets”, Information and Control, 8 (1965), 338–353 | DOI | MR | Zbl

[40] I. D. Zaslavsky, “Formal Axiomatic Theories Based on a Three-valued Logic”, J. Math. Sci., 130:2 (2005), 4578–4597 | DOI | MR | Zbl