@article{ZNSL_2008_358_a5,
author = {S. Grigorieff and Ch. Choffrut},
title = {The decision problem for some logics for finite words on infinite alphabets},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {100--119},
year = {2008},
volume = {358},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a5/}
}
S. Grigorieff; Ch. Choffrut. The decision problem for some logics for finite words on infinite alphabets. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 100-119. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a5/
[1] M. Benedikt, L. Libkin, T. Schwentick, L. Ségoufin, “Definable relations and first-order query languages over strings”, J. Ass. Comput. Mach., 50 (2003), 694–751 | MR
[2] M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, C. David, “Two-variable logic on words with data”, Proceedings of LICS' 06, 2006, 7–16
[3] J. R. Büchi, “On a decision method in restricted second order arithmetics”, Proceedings Int. Cong. in Logic, Methodology and Philosophy of Sci., North-Holland, 1960, 1–11 | MR
[4] C. C. Chang, J. Keisler, Model Theory, North-Holland, 1973 | Zbl
[5] C. Choffrut, S. Grigorieff, “Finite $n$-tape automata over possibly infinite alphabets: extending a theorem of Eilenberg et al.”, Theoret. Comput. Sci., 410:1 (2009), 16–34 | DOI | MR | Zbl
[6] S. Demri, R. Lazić, A. Sangnier, “Model checking freeze LTL over one-counter automata”, Proceedings of FoSSaCS' 08, to appear in Lecture Notes Comp. Sci., 2008 | MR
[7] V. G. Durnev, “Undecidability of the positive $\forall\exists^3$ theory of a free semigroup”, Sib. Mat. Zh., 36:5 (1995), 1067–1080 | DOI | MR | Zbl
[8] S. Eilenberg, C. C. Elgot, J. C. Shepherdson, “Sets recognized by $n$-tape automata”, J. Algebra, 13 (1969), 447–464 | DOI | MR | Zbl
[9] Y. Matiyasevich, G. Senizergues, “Decision problems for semi-thue systems with few rules”, Proceedings 11th LICS 1996 IEEE Computer Soc. Press, 1996, 523–531 | MR
[10] Y. Matiyasevich, G. Senizergues, “Decision problems for semi-thue systems with few rules”, Theor. Comput. Sci., 330:1 (2005), 145–169 | DOI | MR | Zbl
[11] F. Neven, T. Schwentick, V. Vianu, “Towards regular languages over infinite alphabets”, Proceedings 26th MFCS 2001, Lecture Notes Comp. Sci., 2136, 560–572, Extended abstract of [12] | MR | Zbl
[12] F. Neven, T. Schwentick, V. Vianu, “Finite state machines for strings over infinite alphabets”, ACM Transactions on Computational Logic, 15:3 (2004), 403–435 | DOI | MR
[13] B. Poizat, A Course in Model Theory, An Introduction to Modern Mathematical Logic, Universitext, Springer, New York, 2000 | MR
[14] W. Quine, “Concatenation as a basis of arithmetics”, J. Symb. Logic, 11 (1946), 105–114 | DOI | MR | Zbl
[15] J. C. Shepherdson, Unpublished, cited in [17]
[16] J. R. Shoenfield, Mathematical Logic, Addison-Wesley, 1967 | MR | Zbl
[17] J. W. Thatcher, “Decision problems for multiple successor arithmetics”, J. Symb. Logic, 31 (1966), 182–190 | DOI | MR | Zbl
[18] Y. M. Vazhenin, B. V. Rozenblat, “Decidability of the positive theory of a free countably generated semigroup”, Mat. Sb., 116(158) (1981), 120–127 | MR | Zbl
[19] G. Vidal-Naquet, “Quelques applications des automates d'arbres infinis”, Automata, Languages, and Programming, Proceedings ICALP, 1972, ed. M. Nivat, North-Holland, 1972, 115–122 | MR