@article{ZNSL_2008_358_a4,
author = {L. Gordeev and E. H. Haeusler and V. G. da Costa},
title = {Proof compressions with circuit-structured substitutions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {77--99},
year = {2008},
volume = {358},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a4/}
}
L. Gordeev; E. H. Haeusler; V. G. da Costa. Proof compressions with circuit-structured substitutions. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 77-99. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a4/
[1] P. Beame, T. Pitassi, Propositional proof complexity: Past, present and future, Technical Report TR98-067, Electronic Colloquium on Computational Complexity, 1998 | MR
[2] S. R. Buss, “Polynomial size proofs of the propositional pigeonhole principle”, J. of Symbolic Logic, 52:4 (1987), 916–927 | DOI | MR | Zbl
[3] V. G. da Costa, Compactação de provas lógicas, PhD Thesis, Pontifícia Universidade Católica do Rio de Janeiro, 2007
[4] W. Felscher, Lectures on Mathematical Logic. II: Calculi for Derivations and Deductions, Gordon and Breach Sci. Publ., Amsterdam, 2000
[5] M. Finger, “DAG Sequent Proofs with a Substitution Rule”, We will show Them – Essays in honour of Dov Gabbay's 60th birthday, Vol. 1, Kings College Publications, London, 2005, 671–686
[6] M. Finger, D. Gabbay, Cut and pay, Manuscript, 2005 | MR
[7] L. Gordeev, “On cut elimination in the presence of Peirce rule”, Arch. Math. Logic, 26 (1987), 147–164 | DOI | MR | Zbl
[8] A. Haken, “The intractability of resolution”, Theoretical Computer Science, 39 (1985), 297–308 | DOI | MR | Zbl
[9] Zap. Nauchn. Semin. LOMI, 49, 1975, 67–122 | DOI | Zbl | Zbl
[10] G. S. Tseitin, “On the complexity of derivation in the propositional calculus”, Studies in Constructive Mathematics and Mathematical Logic, II, ed. A. O. Slisenko, 1968, 115–125 | Zbl