Time hierarchies for cryptographic function inversion with advice
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 54-76
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a time hierarchy theorem for inverting functions computable in a slightly non-uniform polynomial time. In particular, we prove that if there is a strongly one-way function then for any $k$ and for any polynomial $p$, there is a function $f$ computable in linear time with one bit of advice such that there is a polynomial-time probabilistic adversary that inverts $f$ with probability $\ge1/p(n)$ on infinitely many lengths of input while all probabilistic $O(n^k)$-time adversaries with logarithmic advice invert $f$ with probability less than $1/p(n)$ on almost all lengths of input.
We also prove a similar theorem in the worst-case setting, i.e., if $\mathbf P\neq\mathbf{NP}$, then for every $l>k\ge1$
$$
(\mathbf{DTime}[n^k]\cap\mathbf{NTime}[n])/1\subsetneq(\mathbf{DTime}[n^l]\cap\mathbf{NTime}[n])/1.
$$
Bibl. – 16 titles.
@article{ZNSL_2008_358_a3,
author = {E. A. Hirsch and D. Yu. Grigor'ev and K. V. Pervyshev},
title = {Time hierarchies for cryptographic function inversion with advice},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--76},
publisher = {mathdoc},
volume = {358},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a3/}
}
TY - JOUR AU - E. A. Hirsch AU - D. Yu. Grigor'ev AU - K. V. Pervyshev TI - Time hierarchies for cryptographic function inversion with advice JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 54 EP - 76 VL - 358 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a3/ LA - ru ID - ZNSL_2008_358_a3 ER -
E. A. Hirsch; D. Yu. Grigor'ev; K. V. Pervyshev. Time hierarchies for cryptographic function inversion with advice. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 54-76. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a3/