@article{ZNSL_2008_358_a3,
author = {E. A. Hirsch and D. Yu. Grigor'ev and K. V. Pervyshev},
title = {Time hierarchies for cryptographic function inversion with advice},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--76},
year = {2008},
volume = {358},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a3/}
}
TY - JOUR AU - E. A. Hirsch AU - D. Yu. Grigor'ev AU - K. V. Pervyshev TI - Time hierarchies for cryptographic function inversion with advice JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 54 EP - 76 VL - 358 UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a3/ LA - ru ID - ZNSL_2008_358_a3 ER -
E. A. Hirsch; D. Yu. Grigor'ev; K. V. Pervyshev. Time hierarchies for cryptographic function inversion with advice. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 54-76. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a3/
[1] S. Aaronson, Complexity Zoo, http:// www.complexityzoo.com
[2] B. Barak, “A probabilistic time hierarchy theorem for slightly nonuniform algorithms”, Proceedings of the 6th International Workshop on Randomization and Approximation Techniques in Computer Science, Lecture Notes in Computer Science, 2483, Springer-Verlag, Berlin, 2002, 194–208 | MR | Zbl
[3] S. Cook, “A hierarchy theorem for nondeterministic time complexity”, J. Computer System Sci., 7 (1973), 343–353 | DOI | MR | Zbl
[4] L. Fortnow, R. Santhanam, “Hierarchy theorems for probabilistic polynomial time”, Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, 2004, 316–324
[5] L. Fortnow, R. Santhanam, L. Trevisan, “Hierarchies for semantic classes”, Proceedings of the 37th ACM Symposium on the Theory of Computing, ACM, New York, 2005, 348–355 | MR | Zbl
[6] O. Goldreich, Foundations of Cryptography. Vol. 1: Basic Tools, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[7] O. Goldreich, M. Sudan, L. Trevisan, From logarithmic advice to single-bit advice, Technical Report TR-04-093, Electronic Colloquium on Computational Complexity, 2004
[8] L. A. Hemaspaandra, M. Ogihara, The Complexity Theory Companion, Springer, Berlin, 2002 | MR
[9] J. Hartmanis, R. Stearns, “On the computational complexity of algorithms”, Trans. Amer. Math. Soc., 117 (1965), 285–306 | DOI | MR | Zbl
[10] F. Hennie, R. Stearns, “Two-tape simulation of multitape Turing machines”, J. of ACM, 13:4 (1966), 533–546 | DOI | MR | Zbl
[11] L. Levin, “Universal search problems”, Problems of Information Transmission, 9:3 (1973), 265–266 (Russian) | MR
[12] D. van Melkebeek, K. Pervyshev, “A generic time hierarchy with one bit of advice”, Computational Complexity, 16:2 (2007), 139–179 | DOI | MR | Zbl
[13] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1991 | MR
[14] K. Pervyshev, Time hierarchies for computations with a bit of advice, Technical Report TR-05-054, Electronic Colloquium on Computational Complexity, 2005
[15] J. Seiferas, M. Fischer, A. Meyer, “Separating nondeterministic time complexity classes”, J. of the ACM, 25:1 (1978), 146–167 | DOI | MR | Zbl
[16] S. Žák, “A Turing machine time hierarchy”, Theoretical Computer Science, 26:3 (1983), 327–333 | DOI | MR | Zbl