On a class of bases for Boolean functions
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 271-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that up to congruence there exist exactly fourty-four primitive bases of Boolean functions. We also apply our results in order to improve an algorithm of finding maximal strong depth of a Boolean function. Bibl. – 4 titles.
@article{ZNSL_2008_358_a13,
     author = {D. Skordev},
     title = {On a~class of bases for {Boolean} functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {271--281},
     year = {2008},
     volume = {358},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a13/}
}
TY  - JOUR
AU  - D. Skordev
TI  - On a class of bases for Boolean functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 271
EP  - 281
VL  - 358
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a13/
LA  - en
ID  - ZNSL_2008_358_a13
ER  - 
%0 Journal Article
%A D. Skordev
%T On a class of bases for Boolean functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 271-281
%V 358
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a13/
%G en
%F ZNSL_2008_358_a13
D. Skordev. On a class of bases for Boolean functions. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 271-281. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a13/

[1] E. Lehtonen, “Descending chains and antichains of the unary, linear, and monotone subfunction relations”, Order, 23 (2006), 129–142 | DOI | MR | Zbl

[2] E. L. Post, The Two-valued Iterative Systems of Mathematical Logic, Princeton Univ. Press, Princeton, NJ, 1941 | MR | Zbl

[3] D. Skordev, “Maximal depths of Boolean functions”, Annuaire de l' Univ. de Sofia, Fac. de Math. et Inform., 96 (2004), 89–99 | MR | Zbl

[4] I. E. Zverovich, “Characterizations of closed classes of Boolean functions in terms of forbidden subfunctions and Post classes”, Discrete Applied Mathematics, 149 (2005), 200–218 | DOI | MR | Zbl