Defining the integers in large rings of a~number field using one universal quantifier
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 199-223
Voir la notice de l'article provenant de la source Math-Net.Ru
Julia Robinson has given a first-order definition of the rational integers $\mathbb Z$ in the rational numbers $\mathbb Q$ by a formula $(\forall\exists\forall\exists)(F=0)$ where the $\forall$-quantifiers run over a total of 8 variables, and where $F$ is a polynomial.
We show that for a large class of number fields, not including $\mathbb Q$, for every $\varepsilon>0$, there exists a set of primes $\mathcal S$ of natural density exceeding $1-\varepsilon$, such that $\mathbb Z$ can be defined as a subset of the “large” subring
$$
\{x\in K\colon\operatorname{ord}_\mathfrak px\geq0,\ \forall\,\mathfrak p\not\in\mathcal S\}
$$
of $K$ by a formula where there is only one $\forall$-quantifier. In the case of $\mathbb Q$, we will need two quantifiers. We also show that in some cases one can define a subfield of a number field using just one
universal quantifier. Bibl. – 18 titles.
@article{ZNSL_2008_358_a10,
author = {G. Cornelissen and A. Shlapentokh},
title = {Defining the integers in large rings of a~number field using one universal quantifier},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {199--223},
publisher = {mathdoc},
volume = {358},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a10/}
}
TY - JOUR AU - G. Cornelissen AU - A. Shlapentokh TI - Defining the integers in large rings of a~number field using one universal quantifier JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 199 EP - 223 VL - 358 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a10/ LA - en ID - ZNSL_2008_358_a10 ER -
G. Cornelissen; A. Shlapentokh. Defining the integers in large rings of a~number field using one universal quantifier. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 199-223. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a10/