Defining the integers in large rings of a number field using one universal quantifier
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 199-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Julia Robinson has given a first-order definition of the rational integers $\mathbb Z$ in the rational numbers $\mathbb Q$ by a formula $(\forall\exists\forall\exists)(F=0)$ where the $\forall$-quantifiers run over a total of 8 variables, and where $F$ is a polynomial. We show that for a large class of number fields, not including $\mathbb Q$, for every $\varepsilon>0$, there exists a set of primes $\mathcal S$ of natural density exceeding $1-\varepsilon$, such that $\mathbb Z$ can be defined as a subset of the “large” subring $$ \{x\in K\colon\operatorname{ord}_\mathfrak px\geq0,\ \forall\,\mathfrak p\not\in\mathcal S\} $$ of $K$ by a formula where there is only one $\forall$-quantifier. In the case of $\mathbb Q$, we will need two quantifiers. We also show that in some cases one can define a subfield of a number field using just one universal quantifier. Bibl. – 18 titles.
@article{ZNSL_2008_358_a10,
     author = {G. Cornelissen and A. Shlapentokh},
     title = {Defining the integers in large rings of a~number field using one universal quantifier},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--223},
     year = {2008},
     volume = {358},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a10/}
}
TY  - JOUR
AU  - G. Cornelissen
AU  - A. Shlapentokh
TI  - Defining the integers in large rings of a number field using one universal quantifier
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 199
EP  - 223
VL  - 358
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a10/
LA  - en
ID  - ZNSL_2008_358_a10
ER  - 
%0 Journal Article
%A G. Cornelissen
%A A. Shlapentokh
%T Defining the integers in large rings of a number field using one universal quantifier
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 199-223
%V 358
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a10/
%G en
%F ZNSL_2008_358_a10
G. Cornelissen; A. Shlapentokh. Defining the integers in large rings of a number field using one universal quantifier. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 199-223. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a10/

[1] G. Cornelissen, K. Zahidi, “Elliptic divisibility sequences and undecidable problems about rational points”, J. Reine Angew. Math., 613 (2007), 1–33 | MR | Zbl

[2] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, MA, 1970 | MR | Zbl

[3] B. Mazur, “The topology of rational points”, Experiment. Math., 1:1 (1992), 35–45 | MR | Zbl

[4] B. Poonen, Characterizing integers among rational numbers with a universal-existential formula, , 2007 ; Amer. J. Math. (to appear) arXiv: math/0703907v1[math.NT] | MR

[5] B. Poonen, “Using elliptic curves of rank one towards the undecidability of Hilbert's Tenth Problem over rings of algebraic integers”, Algorithmic Number Theory, Lect. Notes Comput. Sci., 2369, eds. C. Fieker, D. Kohel, Springer-Verlag, Berlin, 2002, 33–42 | MR | Zbl

[6] B. Poonen, “Hilbert's tenth problem and Mazur's conjecture for large subrings of $\mathbb Q$”, J. Amer. Math. Soc., 16:4 (2003), 981–990 | DOI | MR | Zbl

[7] B. Poonen, The set of non-squares in a number field is diophantine, , 2007 arXiv: 0712.1785v2[math.NT]

[8] B. Poonen, A. Shlapentokh, “Diophantine definability of infinite discrete non-Archimedean sets and diophantine models for large subrings of number fields”, J. Reine Angew. Math., 288 (2005), 27–48 | MR

[9] J. Robinson, “Definability and decision problems in arithmetic”, J. Symb. Logic, 14 (1949), 98–114 | DOI | MR | Zbl

[10] J. Robinson, “The undecidability of algebraic rings and fields”, Proc. Amer. Math. Soc., 10 (1959), 950–957 | DOI | MR | Zbl

[11] A. Shlapentokh, “Diophantine definability and decidability in the extensions of degree 2 of totally real fields”, J. Alg., 313 (2007), 846–896 | DOI | MR | Zbl

[12] A. Shlapentokh, “Elliptic curves retaining their rank in finite extensions and Hilbert's Tenth Problem”, Trans. Amer. Math. Soc., 360 (2008), 3451–3555 | DOI | MR

[13] A. Shlapentokh, “Diophantine definability over some rings of algebraic numbers with infinite number of primes allowed in the denominator”, Inv. Math., 129 (1997), 489–507 | DOI | MR | Zbl

[14] A. Shlapentokh, “Defining integrality at prime sets of high density in number fields”, Duke Math. J., 101:1 (2000), 117–134 | DOI | MR | Zbl

[15] A. Shlapentokh, “On diophantine definability and decidability in large subrings of totally real number fields and their totally complex extensions of degree 2”, J. Numb. Th., 95 (2002), 227–252 | MR | Zbl

[16] A. Shlapentokh, Hilbert's Tenth Problem: Diophantine Classes and Extensions to Global Fields, Cambridge University Press, Cambridge, 2007 | MR | Zbl

[17] J. H. Silverman, The arithmetic of elliptic curves, Corrected reprint of the 1986 original, Graduate Texts in Mathematics, 106, Springer-Verlag, New York, 1992 | MR

[18] D. Wesling, “The Speaking Subject in Russian Poetry and Poetics since 1917”, New Literary History, 23:1 (1992), 93–112, (“Versions of Otherness”) | DOI