Defining the integers in large rings of a~number field using one universal quantifier
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 199-223

Voir la notice de l'article provenant de la source Math-Net.Ru

Julia Robinson has given a first-order definition of the rational integers $\mathbb Z$ in the rational numbers $\mathbb Q$ by a formula $(\forall\exists\forall\exists)(F=0)$ where the $\forall$-quantifiers run over a total of 8 variables, and where $F$ is a polynomial. We show that for a large class of number fields, not including $\mathbb Q$, for every $\varepsilon>0$, there exists a set of primes $\mathcal S$ of natural density exceeding $1-\varepsilon$, such that $\mathbb Z$ can be defined as a subset of the “large” subring $$ \{x\in K\colon\operatorname{ord}_\mathfrak px\geq0,\ \forall\,\mathfrak p\not\in\mathcal S\} $$ of $K$ by a formula where there is only one $\forall$-quantifier. In the case of $\mathbb Q$, we will need two quantifiers. We also show that in some cases one can define a subfield of a number field using just one universal quantifier. Bibl. – 18 titles.
@article{ZNSL_2008_358_a10,
     author = {G. Cornelissen and A. Shlapentokh},
     title = {Defining the integers in large rings of a~number field using one universal quantifier},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--223},
     publisher = {mathdoc},
     volume = {358},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a10/}
}
TY  - JOUR
AU  - G. Cornelissen
AU  - A. Shlapentokh
TI  - Defining the integers in large rings of a~number field using one universal quantifier
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 199
EP  - 223
VL  - 358
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a10/
LA  - en
ID  - ZNSL_2008_358_a10
ER  - 
%0 Journal Article
%A G. Cornelissen
%A A. Shlapentokh
%T Defining the integers in large rings of a~number field using one universal quantifier
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 199-223
%V 358
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a10/
%G en
%F ZNSL_2008_358_a10
G. Cornelissen; A. Shlapentokh. Defining the integers in large rings of a~number field using one universal quantifier. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 199-223. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a10/