Non-maximal decidable structures
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 23-37
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Given any infinite structure $\mathfrak M$ with a decidable first-order theory, we give a sufficient condition in terms of the Gaifman graph of $\mathfrak M$, which ensures that $\mathfrak M$ can be expanded with some non-definable predicate in such a way that the first-order theory of the expansion is still decidable. Bibl. – 10 titles.
			
            
            
            
          
        
      @article{ZNSL_2008_358_a1,
     author = {A. B\`es and P. C\'egielski},
     title = {Non-maximal decidable structures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--37},
     publisher = {mathdoc},
     volume = {358},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a1/}
}
                      
                      
                    A. Bès; P. Cégielski. Non-maximal decidable structures. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 23-37. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a1/