Complexity of the identity checking problem for finite semigroups
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 5-22
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the identity checking problem in a finite semigroup $S$ is co-NP-complete whenever $S$ has a nonsolvable subgroup or $S$ is the semigroup of all transformations on a 3-element set. Bibl. – 31 titles.
@article{ZNSL_2008_358_a0,
author = {J. Almeida and M. V. Volkov and S. V. Gol'dberg},
title = {Complexity of the identity checking problem for finite semigroups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--22},
publisher = {mathdoc},
volume = {358},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a0/}
}
TY - JOUR AU - J. Almeida AU - M. V. Volkov AU - S. V. Gol'dberg TI - Complexity of the identity checking problem for finite semigroups JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 5 EP - 22 VL - 358 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a0/ LA - ru ID - ZNSL_2008_358_a0 ER -
J. Almeida; M. V. Volkov; S. V. Gol'dberg. Complexity of the identity checking problem for finite semigroups. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XI, Tome 358 (2008), pp. 5-22. http://geodesic.mathdoc.fr/item/ZNSL_2008_358_a0/