Majoration principles and some inequalities for polynomials and rational functions with prescribed poles
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 143-157

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the equality cases in the majoration principle for meromorphic functions established earlier by V. N. Dubinin and S. I. Kalmykov [Mat. Sb. 198:12 (2007), 37–46; translated in Sb. Math. 198:11–12 (2007), 1737–1745]. As corollaries of this principle, we obtain new inequalities for the coefficients and derivatives of polynomials satisfying certain conditions on two intervals. Simple proofs of some Lukashov's theorems on the derivatives of rational functions on several intervals [MR 2069196 (2006):26010)] are provided. Bibl. – 13 titles.
@article{ZNSL_2008_357_a8,
     author = {S. I. Kalmykov},
     title = {Majoration principles and some inequalities for polynomials and rational functions with prescribed poles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {143--157},
     publisher = {mathdoc},
     volume = {357},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a8/}
}
TY  - JOUR
AU  - S. I. Kalmykov
TI  - Majoration principles and some inequalities for polynomials and rational functions with prescribed poles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 143
EP  - 157
VL  - 357
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a8/
LA  - ru
ID  - ZNSL_2008_357_a8
ER  - 
%0 Journal Article
%A S. I. Kalmykov
%T Majoration principles and some inequalities for polynomials and rational functions with prescribed poles
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 143-157
%V 357
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a8/
%G ru
%F ZNSL_2008_357_a8
S. I. Kalmykov. Majoration principles and some inequalities for polynomials and rational functions with prescribed poles. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 143-157. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a8/