Approximation of periodic functions in the uniform metric by Jackson type polynomials
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 115-142
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $C$ be a space of continuous $2\pi$-periodic functions $f$ with the norm $\|f\|=\max_{x\in\mathbb R}|f(x)|$, 
$$
J_n(f,x)=\frac1{(n+1)^2}\sum^n_{k=0}f(t_k)\Biggl(\frac{\sin\frac{(n+1)}2(x-t_k)}{\sin\frac{(x-t_k)}2}\Biggr)^2,\quad\text{where}\quad t_k=\frac{2\pi k}{n+1},
$$
be the Jackson polynomials of a function $f$. Let $\omega_r(f,h)$ be the $r$th continuity modulu of $f$, $E_n(f)$ be the best approximation of $f$ in the space $C$ by trigonometric polynomials of order $n$,
and let $\widetilde F$ be the function trigonometrically conjugated with the primitive of $f$. The paper establishes results of the following types:
\begin{align*}
E_n(f)+\|J_{4n-1}(f)-f\|\approx\omega_1\Bigl(f,\frac1{n+1}\Bigr)+(n+1)\omega_2\Bigl(\widetilde F,\frac1{n+1}\Bigr),\\
\sup_{\alpha\in\mathbb R}\|J_n(f,\cdot+\alpha)-f(\cdot+\alpha)\|\approx\omega_1\Bigl(f,\frac1{n+1}\Bigr)+(n+1)\omega_2\Bigl(\widetilde F,\frac1{n+1}\Bigr).
\end{align*}
Here, the symbol $\approx$ does not depend on $f$ and $n$. Bibl. – 7 titles.
			
            
            
            
          
        
      @article{ZNSL_2008_357_a7,
     author = {V. V. Zhuk},
     title = {Approximation of periodic functions in the uniform metric by {Jackson} type polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {115--142},
     publisher = {mathdoc},
     volume = {357},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a7/}
}
                      
                      
                    V. V. Zhuk. Approximation of periodic functions in the uniform metric by Jackson type polynomials. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 115-142. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a7/