Approximation of periodic functions in the uniform metric by Jackson type polynomials
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 115-142

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C$ be a space of continuous $2\pi$-periodic functions $f$ with the norm $\|f\|=\max_{x\in\mathbb R}|f(x)|$, $$ J_n(f,x)=\frac1{(n+1)^2}\sum^n_{k=0}f(t_k)\Biggl(\frac{\sin\frac{(n+1)}2(x-t_k)}{\sin\frac{(x-t_k)}2}\Biggr)^2,\quad\text{where}\quad t_k=\frac{2\pi k}{n+1}, $$ be the Jackson polynomials of a function $f$. Let $\omega_r(f,h)$ be the $r$th continuity modulu of $f$, $E_n(f)$ be the best approximation of $f$ in the space $C$ by trigonometric polynomials of order $n$, and let $\widetilde F$ be the function trigonometrically conjugated with the primitive of $f$. The paper establishes results of the following types: \begin{align*} E_n(f)+\|J_{4n-1}(f)-f\|\approx\omega_1\Bigl(f,\frac1{n+1}\Bigr)+(n+1)\omega_2\Bigl(\widetilde F,\frac1{n+1}\Bigr),\\ \sup_{\alpha\in\mathbb R}\|J_n(f,\cdot+\alpha)-f(\cdot+\alpha)\|\approx\omega_1\Bigl(f,\frac1{n+1}\Bigr)+(n+1)\omega_2\Bigl(\widetilde F,\frac1{n+1}\Bigr). \end{align*} Here, the symbol $\approx$ does not depend on $f$ and $n$. Bibl. – 7 titles.
@article{ZNSL_2008_357_a7,
     author = {V. V. Zhuk},
     title = {Approximation of periodic functions in the uniform metric by {Jackson} type polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {115--142},
     publisher = {mathdoc},
     volume = {357},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a7/}
}
TY  - JOUR
AU  - V. V. Zhuk
TI  - Approximation of periodic functions in the uniform metric by Jackson type polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 115
EP  - 142
VL  - 357
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a7/
LA  - ru
ID  - ZNSL_2008_357_a7
ER  - 
%0 Journal Article
%A V. V. Zhuk
%T Approximation of periodic functions in the uniform metric by Jackson type polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 115-142
%V 357
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a7/
%G ru
%F ZNSL_2008_357_a7
V. V. Zhuk. Approximation of periodic functions in the uniform metric by Jackson type polynomials. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 115-142. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a7/