Approximation of periodic functions by Jackson type interpolation sums
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 90-114

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $$ \Phi_n(t)=\frac1{2\pi(n+1)}\Biggl(\frac{\sin\frac{(n+1)t}2}{\sin\frac t2}\Biggr)^2 $$ be Fejer's kernel, $C$ be a space of continuous $2\pi$-periodic functions $f$ with the norm $\|f\|=\max_{x\in\mathbb R}|f(x)|$; $$ J_n(f,x)=\frac{2\pi}{n+1}\sum^n_{k=0}f(t_k)\Phi_n(x-t_k),\quad\text{where}\quad t_k=\frac{2\pi k}{n+1}, $$ be Jackson's polynomials of a function $f$, and let $$ \sigma_n(f,x)=\int^\pi_{-\pi}f(x+t)\Phi_n(t)\,dt $$ be Fejer's sums of $f$. The paper establishes upper estimates for the values of the types $$ |f(x)-J_n(f,x)|,\quad|J_n(f,x)-\sigma_n(f,x)|,\quad\|f-J_n(f)\|,\quad\|J_n(f)-\sigma_n(f)\|, $$ which are exact in the order for every function $f\in C$. Special attention is paid to constants occurring in the inequalities obtained. Bibl. – 14 titles.
@article{ZNSL_2008_357_a6,
     author = {V. V. Zhuk},
     title = {Approximation of periodic functions by {Jackson} type interpolation sums},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--114},
     publisher = {mathdoc},
     volume = {357},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a6/}
}
TY  - JOUR
AU  - V. V. Zhuk
TI  - Approximation of periodic functions by Jackson type interpolation sums
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 90
EP  - 114
VL  - 357
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a6/
LA  - ru
ID  - ZNSL_2008_357_a6
ER  - 
%0 Journal Article
%A V. V. Zhuk
%T Approximation of periodic functions by Jackson type interpolation sums
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 90-114
%V 357
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a6/
%G ru
%F ZNSL_2008_357_a6
V. V. Zhuk. Approximation of periodic functions by Jackson type interpolation sums. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 90-114. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a6/