Approximation of periodic functions by Jackson type interpolation sums
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 90-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $$ \Phi_n(t)=\frac1{2\pi(n+1)}\Biggl(\frac{\sin\frac{(n+1)t}2}{\sin\frac t2}\Biggr)^2 $$ be Fejer's kernel, $C$ be a space of continuous $2\pi$-periodic functions $f$ with the norm $\|f\|=\max_{x\in\mathbb R}|f(x)|$; $$ J_n(f,x)=\frac{2\pi}{n+1}\sum^n_{k=0}f(t_k)\Phi_n(x-t_k),\quad\text{where}\quad t_k=\frac{2\pi k}{n+1}, $$ be Jackson's polynomials of a function $f$, and let $$ \sigma_n(f,x)=\int^\pi_{-\pi}f(x+t)\Phi_n(t)\,dt $$ be Fejer's sums of $f$. The paper establishes upper estimates for the values of the types $$ |f(x)-J_n(f,x)|,\quad|J_n(f,x)-\sigma_n(f,x)|,\quad\|f-J_n(f)\|,\quad\|J_n(f)-\sigma_n(f)\|, $$ which are exact in the order for every function $f\in C$. Special attention is paid to constants occurring in the inequalities obtained. Bibl. – 14 titles.
@article{ZNSL_2008_357_a6,
     author = {V. V. Zhuk},
     title = {Approximation of periodic functions by {Jackson} type interpolation sums},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--114},
     year = {2008},
     volume = {357},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a6/}
}
TY  - JOUR
AU  - V. V. Zhuk
TI  - Approximation of periodic functions by Jackson type interpolation sums
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 90
EP  - 114
VL  - 357
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a6/
LA  - ru
ID  - ZNSL_2008_357_a6
ER  - 
%0 Journal Article
%A V. V. Zhuk
%T Approximation of periodic functions by Jackson type interpolation sums
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 90-114
%V 357
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a6/
%G ru
%F ZNSL_2008_357_a6
V. V. Zhuk. Approximation of periodic functions by Jackson type interpolation sums. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 90-114. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a6/

[1] A. Zigmund, Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR

[2] J. Szabados, “On the convergence and saturation problem of the Jackson polynomials”, Acta Math. Hungar., 24:3–4 (1973), 399–406 | MR

[3] T. F. Xie, X. L. Zhou, “The Jackson interpolation operator and construction of functions”, Acta Math. Hungar., 112:3 (2006), 237–247 | DOI | MR | Zbl

[4] V. V. Zhuk, G. I. Natanson, Trigonometricheskie ryady Fure i elementy teorii approksimatsii, L., 1983 | MR

[5] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, Izd-vo LGU, L., 1982 | MR | Zbl

[6] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[7] N. I. Akhiezer, M. G. Krein, “O nailuchshem priblizhenii trigonometricheskimi summami differentsiruemykh periodicheskikh funktsii”, Dokl. AN SSSR, 15:3 (1937), 107–112

[8] O. L. Vinogradov, “Tochnoe neravenstvo dlya otkloneniya summ Rogozinskogo i vtorogo modulya nepreryvnosti v prostranstve nepreryvnykh periodicheskikh funktsii”, Zap. nauchn. cemin. POMI, 247, POMI, SPb., 1997, 26–45 | MR | Zbl

[9] A. I. Stepanets, Ravnomernye priblizheniya trigonometricheskimi polinomami, Naukova dumka, Kiev, 1981 | MR | Zbl

[10] V. Zhuk, G. Natanson, “K voprosu priblizheniya funktsii posredstvom polozhitelnykh operatorov”, Uch. zap. Tartuskogo gos. un-ta, XIX:430 (1997), 58–69

[11] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, Fizmatlit, M., 1977 | MR | Zbl

[12] V. V. Zhuk, Lektsii po teorii approksimatsii, SPb., 2008

[13] O. L. Vinogradov, “O kvadratichnom funktsionale iz zadachi o tochnoi postoyannoi v neravenstve Dzheksona dlya priblizheniya lineinymi polozhitelnymi operatorami”, Vestn. LGU. Ser. 1. Matem., mekh., astrnom., 1998, no. 3, 6–11 | Zbl

[14] V. V. Zhuk, S. Yu. Pimenov, “O normakh summ Akhiezera–Kreina–Favara”, Vestn. LGU. Ser. 1. Matem., mekh., astrnom., 2006, no. 4, 37–47 | MR