On extremal decomposition problems
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 54-74
Voir la notice de l'article provenant de la source Math-Net.Ru
We adapt the capacity approach and symmetrization method to some extremal decomposition problems on the disk unit or an annulus. We consider the problems on the maximum product of the inner radii of pairwise disjoint domains and the maximum product of the Robin radii of such domains. The new invariants with respect to Möbius transformations of the Riemann sphere are introduced. In particular, for these invariants the problems on extremal decomposition with free poles on the unit circle are investigated. Bibl. – 19 titles.
@article{ZNSL_2008_357_a4,
author = {V. N. Dubinin and D. A. Kirillova},
title = {On extremal decomposition problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--74},
publisher = {mathdoc},
volume = {357},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a4/}
}
V. N. Dubinin; D. A. Kirillova. On extremal decomposition problems. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 54-74. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a4/