A distortion theorem for the class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 33-45

Voir la notice de l'article provenant de la source Math-Net.Ru

The author's investigations in the well known class $T$ of typically real functions $f(z)$ in the disk $U=\{z:|z|1\}$ are prolonged. The region of values of the system $\{f(z_0),f(z_0),f(r_1),f(r_2),\dots,f(r_n)\}$ in the class $T$ is investigated. Here $z_0\in U$, $\operatorname{Im}z_0\ne0$, $0$ for $j=1,\dots,n$, $n\ge2$. As a corollary, the region of values of $f'(z_0)$ in the class of functions $f\in T$ with fixed values $f(z_0)$ and $f(r_j)$ $(j=1,\dots,n)$ is determined. In the proof a criterion of decision power moment problem is used. Bibl. – 10 titles.
@article{ZNSL_2008_357_a2,
     author = {E. G. Goluzina},
     title = {A distortion theorem for the class of typically real functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--45},
     publisher = {mathdoc},
     volume = {357},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a2/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - A distortion theorem for the class of typically real functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 33
EP  - 45
VL  - 357
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a2/
LA  - ru
ID  - ZNSL_2008_357_a2
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T A distortion theorem for the class of typically real functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 33-45
%V 357
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a2/
%G ru
%F ZNSL_2008_357_a2
E. G. Goluzina. A distortion theorem for the class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 33-45. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a2/