A distortion theorem for the class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 33-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The author's investigations in the well known class $T$ of typically real functions $f(z)$ in the disk $U=\{z:|z|<1\}$ are prolonged. The region of values of the system $\{f(z_0),f(z_0),f(r_1),f(r_2),\dots,f(r_n)\}$ in the class $T$ is investigated. Here $z_0\in U$, $\operatorname{Im}z_0\ne0$, $0 for $j=1,\dots,n$, $n\ge2$. As a corollary, the region of values of $f'(z_0)$ in the class of functions $f\in T$ with fixed values $f(z_0)$ and $f(r_j)$ $(j=1,\dots,n)$ is determined. In the proof a criterion of decision power moment problem is used. Bibl. – 10 titles.
@article{ZNSL_2008_357_a2,
     author = {E. G. Goluzina},
     title = {A distortion theorem for the class of typically real functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--45},
     year = {2008},
     volume = {357},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a2/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - A distortion theorem for the class of typically real functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 33
EP  - 45
VL  - 357
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a2/
LA  - ru
ID  - ZNSL_2008_357_a2
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T A distortion theorem for the class of typically real functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 33-45
%V 357
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a2/
%G ru
%F ZNSL_2008_357_a2
E. G. Goluzina. A distortion theorem for the class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 33-45. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a2/

[1] M. S. Robertson,, “On the coefficients of typically-real function”, Bull. Amer. Math. Soc., 41:8 (1935), 565–572 | DOI | MR | Zbl

[2] G. M. Goluzin, “O tipichno veschestvennykh funktsiyakh”, Matem. sb., 27(69):2 (1950), 201–218 | MR | Zbl

[3] G. M. Goluzin, “Ob odnom metode variatsii v teorii analiticheskikh funktsii”, Uchen. zap. LGU, 144 (1952), 85–101 | MR

[4] V. A. Andreeva, N. A. Lebedev, A. V. Stovbun, “Ob oblastyakh znachenii nekotorykh sistem funktsionalov v nekotorykh klassakh regulyarnykh funktsii”, Vestn. LGU. Ser. 1. Matem., mekh., astrnom., 1961, no. 2, 8–22 | MR | Zbl

[5] N. Akhiezer, M. Krein, O nekotorykh voprosakh teorii momentov, GONTI, Kharkov, 1938

[6] E. G. Goluzina, “O mnozhestve znachenii sistem $\{f(z_1),f'(z_1)\}$ i $\{f(z_1),f(z_2)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 254, POMI, SPb., 1998, 65–75 | MR | Zbl

[7] E. G. Goluzina, “O mnozhestvakh znachenii sistem $\{f(z_1),f(z_2),f'(z_2)\}$ i $\{f(z_1),f'(z_1),f''(z_1)\}$ na klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 286, POMI, SPb., 2002, 48–61 | MR | Zbl

[8] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, Nauka, Fizmatlit, M., 1973 | MR

[9] F. R. Gantmakher, Teoriya matrits, 3-e izd., Nauka, Fizmatlit, M., 1967 | MR

[10] E. G. Goluzina, “O mnozhestve znachenii sistemy $\{f(z_1),\dots,f(z_n)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 314, POMI, SPb., 2004, 41–51 | MR | Zbl