@article{ZNSL_2008_357_a12,
author = {O. M. Fomenko},
title = {Mean value theorems for a~class of {Dirichlet} series},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {201--223},
year = {2008},
volume = {357},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a12/}
}
O. M. Fomenko. Mean value theorems for a class of Dirichlet series. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 201-223. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a12/
[1] J. Kaczorowski, A. Perelli, “The Selberg class: a survey”, Number Theory in Progress, Vol. 2 (Zakopane–Kościelisko, 1997), de Gruyter, Berlin, 1999, 953–992 | MR | Zbl
[2] E. Landau, “Über die Anzahl der Gitterpunkte in gewissen Bereichen”, Gött. Nachr., 1912, 687–771
[3] A. de Roton, “On the mean square of the error term for an extended Selberg class”, Acta Arithm., 126 (2007), 27–55 | DOI | MR | Zbl
[4] K. Chandrasekharan, R. Narasimhan, “On the mean value of the error term of a class of arithmetical functions”, Acta Math., 112 (1964), 41–67 | DOI | MR | Zbl
[5] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edn, revised by D. R. Heath-Brown, Clarendon Press, New York, 1986 | MR | Zbl
[6] A. Ivić, The Riemann zeta-function, Wiley, New York etc., 1985 | MR | Zbl
[7] Y.-K. Lau, “On the mean square formula of the error term for a class of arithmetical functions”, Monatsh. Math., 128 (1999), 111–129 | DOI | MR | Zbl
[8] M. N. Huxley, N. Watt, “The number of ideals in a quadratic field”, Proc. Indian Acad. Sci. Math. Sci., 104:1 (1994), 157–165 | DOI | MR | Zbl
[9] K. Chandrasekharan, R. Narasimhan, “The approximate functional equation for a class of zeta-functions”, Math. Ann., 152 (1963), 30–64 | DOI | MR | Zbl
[10] O. M. Fomenko, “Srednie znacheniya, svyazannye s dzeta-funktsiei Dedekinda”, Zap. nauchn. semin. POMI, 350, POMI, SPb., 2007, 187–198 | MR
[11] K.-C. Tong, “On divisor problems. I”, Acta Math. Sinica, 5 (1955), 313–324 ; “On divisor problems. III”, Acta Math. Sinica, 6 (1956), 515–541 | MR | Zbl | Zbl
[12] D. R. Heath-Brown, “The distribution and moments of the error term in the Dirichlet divisor problem”, Acta Arithm., 60 (1992), 389–415 | MR | Zbl
[13] A. Walficz, “Über die Koeffizientensummen einiger Modulformen”, Math. Ann., 108 (1933), 75–90 | DOI | MR
[14] J. L. Hafner, “On the representation of the summatory functions of a class of arithmetical functions”, Analytic Number Theory, Lecture Notes in Math., 899, Springer, Berlin, 1981, 148–165 | MR
[15] O. M. Fomenko, “Teoremy o srednikh znacheniyakh dlya avtomorfnykh $L$-funktsii”, Algebra i analiz, 19:5 (2007), 246–264 | MR
[16] A. Ivić, “Large values of certain number-theoretic error terms”, Acta Arithm., 56 (1990), 135–159 | MR | Zbl
[17] K. Matsumoto, “Liftings and mean value theorems for utomorphic $L$-functions”, Proc. London Math. Soc. (3), 90 (2005), 297–320 | DOI | MR | Zbl
[18] A. Good, “Approximative Funktionalgleichungen und Mittelwertsätze für Dirichletreihen, die Spitzenformen assoziiert sind”, Comment. Math. Helv., 50 (1975), 327–361 | DOI | MR | Zbl
[19] A. Good, “The square mean of Dirichlet series associated with cusp forms”, Mathematika, 29 (1982), 278–295 | DOI | MR | Zbl
[20] A. Ivić, “On zeta-functions associated with Fourier coefficients of cusp forms”, Proc. of the Amalfi Conf. on Analytic Number Theory (Maiori, 1989), Iniv. Salerno, Salerno, 1992, 231–246 | MR
[21] M. Jutila, Lectures on a method in the theory of exponential sums, Published for the Tata Institute of Fundamental Research, Bombay, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 80, Springer, Berlin, 1987 | MR