Mean value theorems for a~class of Dirichlet series
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 201-223

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an asymptotic formula instead of the upper bounds of Chandrasekharan and Narasimhan (1964) and Lau (1999) for the mean square value of the error term associated with the Dedekind zeta-function of a cubic field $K_3$. We study also modular analogs of the classical divisor problems. Bibl. – 21 titles.
@article{ZNSL_2008_357_a12,
     author = {O. M. Fomenko},
     title = {Mean value theorems for a~class of {Dirichlet} series},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {201--223},
     publisher = {mathdoc},
     volume = {357},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a12/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Mean value theorems for a~class of Dirichlet series
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 201
EP  - 223
VL  - 357
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a12/
LA  - ru
ID  - ZNSL_2008_357_a12
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Mean value theorems for a~class of Dirichlet series
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 201-223
%V 357
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a12/
%G ru
%F ZNSL_2008_357_a12
O. M. Fomenko. Mean value theorems for a~class of Dirichlet series. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 201-223. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a12/