On quadratic congruences
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 195-200
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that under suitable assumptions, the solutions $f$ of quadratic congruences $Q(f)\equiv0\,(\operatorname{mod}n)$, $n\le x$, with $(f/n)=\pm1$ distribute asymptotically equally as $x\to\infty$. Bibl. – 5 titles.
@article{ZNSL_2008_357_a11,
author = {O. M. Fomenko},
title = {On quadratic congruences},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {195--200},
year = {2008},
volume = {357},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a11/}
}
O. M. Fomenko. On quadratic congruences. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 195-200. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a11/
[1] O. M. Fomenko, “O raspredelenii kornei kvadratichnogo sravneniya”, Zap. nauchn. semin. LOMI, 183, Nauka, L., 1990, 155–164 | MR
[2] C. Hooley, “On the number of divisors of quadratic polynomials”, Acta Math., 110 (1963), 97–114 | DOI | MR | Zbl
[3] D. Ismoilov, “Summirovanie chisla reshenii kvadratichnogo sravneniya”, Dokl. AN Tadzh. SSR, 21:9 (1978), 10–13 | MR | Zbl
[4] K. Chandrasekharan, A. Good, “On the number of integral ideals in Galois extensions”, Monatsh. Math., 95 (1983), 99–109 | DOI | MR | Zbl
[5] A. Good, “Approximative Funktionalgleichungen und Mittelwertsätze für Dirichletreihen, die Spitzenformen assoziiert sind”, Comment. Math. Helv., 50 (1975), 327–361 | DOI | MR | Zbl