On a~plane convex curve with a~large number of lattice points
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 22-32
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\gamma$ be a continuous convex curve and let $N_M$ be the number of points belonging to $\gamma$ of the form $(u/M,v/M)$, where $u,v$ are integers.
A smooth curve $\gamma$ such that there exists a sequence $\{M\}$ with the property $N_M>M^{\log2/\log3}$ ($\log2/\log3>0.639$) is constructed. Bibl. – 10 titles.
@article{ZNSL_2008_357_a1,
author = {E. P. Golubeva},
title = {On a~plane convex curve with a~large number of lattice points},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {22--32},
publisher = {mathdoc},
volume = {357},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a1/}
}
E. P. Golubeva. On a~plane convex curve with a~large number of lattice points. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 22-32. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a1/