On a plane convex curve with a large number of lattice points
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 22-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\gamma$ be a continuous convex curve and let $N_M$ be the number of points belonging to $\gamma$ of the form $(u/M,v/M)$, where $u,v$ are integers. A smooth curve $\gamma$ such that there exists a sequence $\{M\}$ with the property $N_M>M^{\log2/\log3}$ ($\log2/\log3>0.639$) is constructed. Bibl. – 10 titles.
@article{ZNSL_2008_357_a1,
     author = {E. P. Golubeva},
     title = {On a~plane convex curve with a~large number of lattice points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--32},
     year = {2008},
     volume = {357},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a1/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - On a plane convex curve with a large number of lattice points
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 22
EP  - 32
VL  - 357
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a1/
LA  - ru
ID  - ZNSL_2008_357_a1
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T On a plane convex curve with a large number of lattice points
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 22-32
%V 357
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a1/
%G ru
%F ZNSL_2008_357_a1
E. P. Golubeva. On a plane convex curve with a large number of lattice points. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 22-32. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a1/

[1] V. Jarník, “Über die Gitterpunkte auf konvexen Kurven”, Math. Z., 24 (1926), 500–518 | DOI | MR

[2] A. Plague, “A uniform version of Jarník theorem”, Acta Arith., 87:3 (1999), 255–267 | MR

[3] F. B. Petrov, “O kolichestve ratsionalnykh tochek na strogo vypukloi krivoi”, Funkts. analiz i ego pril., 40:1 (2006), 30–42 | MR | Zbl

[4] H. P. F. Svinnerton–Dyer, “The number of lattice points on a convex curve”, J. Number Theory, 6 (1974), 128–135 | DOI | MR

[5] E. Bombieri, J. Pila, “The number of integral points on arcs and ovals”, Duke Math. J., 59 (1989), 337–357 | DOI | MR | Zbl

[6] M. N. Huxley, Area, Lattice Points and Exponential Sums, Clarendon Press, Oxford, 1996 | MR | Zbl

[7] B. A. Venkov, Elementarnaya teoriya chisel, M.–L., 1937 | Zbl

[8] V. N. Popov, “Asimptotika summy summ nepreryvnykh drobei chisel vida $a/p$”, Zap. nauchn. semin. LOMI, 91, Nauka, L., 1979, 81–93 | MR | Zbl

[9] G. Myerson, “On semi-regular finite continued fractions”, Arch. Math., 48:5 (1987), 420–425 | DOI | MR | Zbl

[10] E. P. Golubeva, “O momentakh elementov nepreryvnykh drobei dlya nekotorykh ratsionalnykh chisel”, Zap. nauchn. semin. POMI, 337, POMI, SPb., 2006, 13–22 | MR | Zbl