A bound for the representability of large numbers by ternary quadratic forms and nonhomogeneous Waring equations
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 5-21
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that equation $n=x^2+y^2+6pz^2$ ($p$ is a large fixed prime) is solvable if natural congruencial conditions are satisfied and $nm^{12}>p^{21}$.
As a consequence the solvability of the equation $n=x^2+y^2+u^3+v^3+z^4+w^{16}+t^{4k+1}$ is proved for all sufficiently large $n$. Bibl. – 13 titles.
@article{ZNSL_2008_357_a0,
author = {E. P. Golubeva},
title = {A bound for the representability of large numbers by ternary quadratic forms and nonhomogeneous {Waring} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--21},
publisher = {mathdoc},
volume = {357},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a0/}
}
TY - JOUR AU - E. P. Golubeva TI - A bound for the representability of large numbers by ternary quadratic forms and nonhomogeneous Waring equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 5 EP - 21 VL - 357 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a0/ LA - ru ID - ZNSL_2008_357_a0 ER -
%0 Journal Article %A E. P. Golubeva %T A bound for the representability of large numbers by ternary quadratic forms and nonhomogeneous Waring equations %J Zapiski Nauchnykh Seminarov POMI %D 2008 %P 5-21 %V 357 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a0/ %G ru %F ZNSL_2008_357_a0
E. P. Golubeva. A bound for the representability of large numbers by ternary quadratic forms and nonhomogeneous Waring equations. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a0/