A bound for the representability of large numbers by ternary quadratic forms and nonhomogeneous Waring equations
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 5-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that equation $n=x^2+y^2+6pz^2$ ($p$ is a large fixed prime) is solvable if natural congruencial conditions are satisfied and $nm^{12}>p^{21}$. As a consequence the solvability of the equation $n=x^2+y^2+u^3+v^3+z^4+w^{16}+t^{4k+1}$ is proved for all sufficiently large $n$. Bibl. – 13 titles.
@article{ZNSL_2008_357_a0,
     author = {E. P. Golubeva},
     title = {A bound for the representability of large numbers by ternary quadratic forms and nonhomogeneous {Waring} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--21},
     year = {2008},
     volume = {357},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a0/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - A bound for the representability of large numbers by ternary quadratic forms and nonhomogeneous Waring equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 5
EP  - 21
VL  - 357
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a0/
LA  - ru
ID  - ZNSL_2008_357_a0
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T A bound for the representability of large numbers by ternary quadratic forms and nonhomogeneous Waring equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 5-21
%V 357
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a0/
%G ru
%F ZNSL_2008_357_a0
E. P. Golubeva. A bound for the representability of large numbers by ternary quadratic forms and nonhomogeneous Waring equations. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 23, Tome 357 (2008), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_2008_357_a0/

[1] E. P. Golubeva, “O neodnorodnykh uravneniyakh Varinga”, Zap. nauchn. semin. POMI, 226, POMI, SPb., 1996, 65–68 | MR | Zbl

[2] C. Hooley, “On a new approach to various problems of Waring's type”, Recent progress in analytic number theory, Vol. I (Durham, 1979), Academic Press, London, 1981, 127–191 | MR

[3] Yu. V. Linnik, “Additive problems involving squares, cubes, and almost primes”, Acta Arithm., 21 (1972), 413–422 | MR | Zbl

[4] W. Duke, R. Schulze-Pillot, “Representation of integers by positive ternary quadratic forms and equidistribution of lattive points on ellipsoids”, Invent. Math., 99 (1990), 49–57 | DOI | MR | Zbl

[5] V. Blomer, “Uniform bounds for Fourier coefficients of theta-series with arithmetic applications”, Acta Arithm., 114:1 (2004), 1–21 | DOI | MR | Zbl

[6] M. B. Barban, Yu. V. Linnik, N. G. Tschudakov, “On prime numbers in an arithmetic progression with a prime-power difference”, Acta Arithm., 9 (1964), 375–390 | MR | Zbl

[7] P. X. Gallagher, “Primes in progressions to prime-power modulus”, Invent. Math., 16 (1972), 191–201 | DOI | MR | Zbl

[8] H. Iwaniec, “Fourier coefficients of modular forms of half-integral weight”, Invent. Math., 87 (1987), 385–401 | DOI | MR | Zbl

[9] W. Duke, “Hyperbolic distribution problems and half-integral weight Maass forms”, Invent. Math., 99 (1990), 49–57 | DOI | MR | Zbl

[10] E. P. Golubeva, “Primenenie pod'ema Shimury k zadache o predstavlenii bolshikh chisel ternarnymi kvadratichnymi formami”, Zap. nauchn. semin. LOMI, 144, Nauka, L., 1985, 27–37 | MR | Zbl

[11] J. B. Conrey, H. Iwaniec, “The cubic moment of central values of automorphic $L$-functions”, Ann. of Math. (2), 151 (2000), 1175–1216 | DOI | MR | Zbl

[12] V. A. Bykovskii, “Formula sleda dlya skalyarnogo proizvedeniya ryadzhov Gekke i ee prilozheniya”, Zap. nauchn. semin. POMI, 226, POMI, SPb., 1996, 14–36 | MR | Zbl

[13] H. Iwaniec, Topics in classical automorphic forms, Amer. Math. Sos., Providence, RI, 1997 | MR | Zbl