Regular unipotent elements from naturally embedded subgroups of rank 2 in modular representations of classical groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 17, Tome 356 (2008), pp. 159-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study images of regular unipotent elements from naturally embedded subgroups of type $A_2$ and $B_2$ in irreducible modular representations of classical groups. For the images of such elements and representations with locally small highest weights one encounters Jordan block of all sizes of the same parity. Bibl. – 17 titles.
@article{ZNSL_2008_356_a5,
     author = {A. A. Osinovskaya},
     title = {Regular unipotent elements from naturally embedded subgroups of rank~2 in modular representations of classical groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {159--178},
     year = {2008},
     volume = {356},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a5/}
}
TY  - JOUR
AU  - A. A. Osinovskaya
TI  - Regular unipotent elements from naturally embedded subgroups of rank 2 in modular representations of classical groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 159
EP  - 178
VL  - 356
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a5/
LA  - ru
ID  - ZNSL_2008_356_a5
ER  - 
%0 Journal Article
%A A. A. Osinovskaya
%T Regular unipotent elements from naturally embedded subgroups of rank 2 in modular representations of classical groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 159-178
%V 356
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a5/
%G ru
%F ZNSL_2008_356_a5
A. A. Osinovskaya. Regular unipotent elements from naturally embedded subgroups of rank 2 in modular representations of classical groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 17, Tome 356 (2008), pp. 159-178. http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a5/

[1] N. Burbaki, Gruppy i algebry Li, gl. VII–VIII, Mir, M., 1978 | MR

[2] M. V. Velichko, “O povedenii kornevykh elementov v modulyarnykh predstavleniyakh simplekticheskikh grupp”, Tr. IM NAN Belarusi, 14:2 (2006), 28–34

[3] D. P. Zhelobenko, “Klassicheskie gruppy. Spektralnyi analiz konechnomernykh predstavlenii”, UMN, 17:1 (1962), 27–120 | MR | Zbl

[4] A. A. Osinovskaya, I. D. Suprunenko, “Blochnaya struktura unipotentnykh elementov iz estestvenno vlozhennykh podgrupp tipa $A_3$ v spetsialnykh modulyarnykh predstavleniyakh grupp tipa $A_n$”, Doklady NAN Belarusi, 51:6 (2007), 25–29 | MR

[5] A. A. Premet, “Vesa infinitezimalno neprivodimykh predstavlenii nad polem prostoi kharakteristiki”, Matem. sb., 133(175):2 (1987), 167–183 | MR | Zbl

[6] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[7] I. D. Suprunenko, “Minimalnye polinomy elementov poryadka $p$ v neprivodimykh predstavleniyakh grupp Shevalle nad polyami kharakteristiki $p$”, Problemy algebry i logiki, Trudy In-ta matematiki SO RAN, 30, Novosibirsk, 1996, 126–163 | Zbl

[8] J. C. Jantzen, Representations of Algebraic Groups, Second Edition, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[9] A. A. Osinovskaya, Nilpotent elements in irreducible representations of simple Lie algebras of small rank, Preprint, No 5(554), Inst. Math. Nat. Acad. Sci. Belarus, Minsk, 1999, 31 pp.

[10] A. A. Osinovskaya, “Restrictions of irreducible representations of classical algebraic groups to root $A_1$-subgroups”, Commun. Algebra, 31 (2003), 2357–2379 | DOI | MR | Zbl

[11] A. A. Osinovskaya, I. D. Suprunenko, “On the Jordan block structure of images of some unipotent elements in modular irreducible representations of the classical algebraic groups”, J. Algebra, 273 (2004), 586–600 | DOI | MR | Zbl

[12] A. A. Osinovskaya, “On the restrictions of modular irreducible representations of algebraic groups of type $A_n$ to naturally embedded subgroups of type $A_2$”, J. Group Theory, 8 (2005), 43–92 | DOI | MR | Zbl

[13] A. A. Osinovskaya, “The restrictions of representations of algebraic groups of types $B_n$ and $D_n$ to subgroups of type $A_2$”, J. Algebra Appl., 4 (2005), 467–479 | DOI | MR | Zbl

[14] S. Smith, “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl

[15] I. D. Suprunenko, “On Jordan blocks of elements of order $p$ in irreducible representations of classical groups with $p$-large highest weights”, J. Algebra, 273 (1997), 589–627 | DOI | MR

[16] P. H. Tiep, A. E. Zalesskii, “Mod $p$ reducibility of unramified representations of finite groups of Lie type”, Proc. London Math. Soc., 84 (2002), 439–472 | DOI | MR | Zbl

[17] M. V. Velichko, “On the behaviour of root elements in irreducible representations of simple algebraic groups”, Tr. IM NAN Belarusi, 13:2 (2005), 116–121