A transfer morphism for Witt cogroups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 17, Tome 356 (2008), pp. 149-158

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a ring with an involution in which 2 is invertible, $\epsilon$ be 1 or $-1$, $s(\in A)$ be a central regular element such that $s^\ast = s$. We construct a transfer homomorphism $_\epsilon W'_0(A/s)\to{}_\epsilon W'_1(A)$ for Witt cogroups and prove a projection formula. Bibl. – 11 titles.
@article{ZNSL_2008_356_a4,
     author = {V. I. Kopeiko},
     title = {A transfer morphism for {Witt} cogroups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--158},
     publisher = {mathdoc},
     volume = {356},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a4/}
}
TY  - JOUR
AU  - V. I. Kopeiko
TI  - A transfer morphism for Witt cogroups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 149
EP  - 158
VL  - 356
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a4/
LA  - ru
ID  - ZNSL_2008_356_a4
ER  - 
%0 Journal Article
%A V. I. Kopeiko
%T A transfer morphism for Witt cogroups
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 149-158
%V 356
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a4/
%G ru
%F ZNSL_2008_356_a4
V. I. Kopeiko. A transfer morphism for Witt cogroups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 17, Tome 356 (2008), pp. 149-158. http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a4/