A transfer morphism for Witt cogroups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 17, Tome 356 (2008), pp. 149-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $A$ be a ring with an involution in which 2 is invertible, $\epsilon$ be 1 or $-1$, $s(\in A)$ be a central regular element such that $s^\ast = s$. We construct a transfer homomorphism $_\epsilon W'_0(A/s)\to{}_\epsilon W'_1(A)$ for Witt cogroups and prove a projection formula. Bibl. – 11 titles.
@article{ZNSL_2008_356_a4,
     author = {V. I. Kopeiko},
     title = {A transfer morphism for {Witt} cogroups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--158},
     year = {2008},
     volume = {356},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a4/}
}
TY  - JOUR
AU  - V. I. Kopeiko
TI  - A transfer morphism for Witt cogroups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 149
EP  - 158
VL  - 356
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a4/
LA  - ru
ID  - ZNSL_2008_356_a4
ER  - 
%0 Journal Article
%A V. I. Kopeiko
%T A transfer morphism for Witt cogroups
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 149-158
%V 356
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a4/
%G ru
%F ZNSL_2008_356_a4
V. I. Kopeiko. A transfer morphism for Witt cogroups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 17, Tome 356 (2008), pp. 149-158. http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a4/

[1] Kh. Bass, Algebraicheskaya $K$-teoriya, Mir, M., 1973. | MR | Zbl

[2] V. I. Kopeiko, “Gomomorfizm perenosa dlya $K_1$-funktora”, Trudy Mezhd. semin. univers. alg. i prilozh., Volgograd, 2000 | MR

[3] D. Milnor, Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | MR | Zbl

[4] M.-A. Knus, Quadratic and hermitian forms over rings, Grund. Math. Wiss., 294, Springer, Berlin, 1991 | MR | Zbl

[5] M. Karoubi, “Théorie de Quillen et homologie du groupe orthogonal”, Ann. Math., 112 (1980), 207–257 | DOI | MR | Zbl

[6] L. N. Vasershtein, “Stabilizatsiya unitarnykh i ortogonalnykh grupp nad koltsami s involyutsiei”, Matem. sb., 81(123):3 (1970), 328–351 | MR | Zbl

[7] M. Karoubi, “Le théorème fondamental de la $K$-théorie hermitienne”, Ann. Math., 112 (1980), 259–280 | DOI | MR

[8] A. J. Berrick, M. Karoubi, “Hermitian $K$-theory of the integers”, Amer. J. Math., 127 (2005), 785–823 | DOI | MR | Zbl

[9] P. Balmer, “An introduction to triangular Witt groups and a survey of applications”, Contemp. Math., 344 (2004), 31–58 | MR | Zbl

[10] S. Gille, “A transfer morphism for Witt groups”, J. Reine Angew. Math., 564 (2003), 215–233 | DOI | MR | Zbl

[11] V. I. Kopeiko, “Transfer v unitarnoi $K$-teorii”, Nauch. mysl Kavkaza, 5, Spetsvypusk (2006), 156–158