@article{ZNSL_2008_356_a0,
author = {M. V. Bondarko and A. V. Dievskii},
title = {Non-abelian associated orders of wildly ramified local field extensions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--45},
year = {2008},
volume = {356},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a0/}
}
M. V. Bondarko; A. V. Dievskii. Non-abelian associated orders of wildly ramified local field extensions. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 17, Tome 356 (2008), pp. 5-45. http://geodesic.mathdoc.fr/item/ZNSL_2008_356_a0/
[1] A. Fröhlich,, Galois module structure of algebraic integers, Ergeb. Math. Grenzgeb., Springer, Berlin, 1983, 160 pp. | MR
[2] M. Taylor, “Formal groups and the Galois module structure of local rings of integers”, J. Reine Angew. Math., 358 (1985), 97–103 | DOI | MR | Zbl
[3] L. Childs, D. Moss, “Hopf algebras and local Galois module theory”, Advances in Hopf algebras, Lect. Notes in Pure and Appl. Math., 158, Dekker, New York, 1994, 1–24 | MR | Zbl
[4] M. V. Bondarko, “Local Leopoldt's problems for ideals in totally ramified $p$-extensions of complete discrete valuation fields”, Algebraic Number Theory and Algebraic Geometry, Papers Dedicated to A. N. Parshin on the Occasion of his Sixtieth Birthday, Contemporary Math., 300, Amer. Math. Soc., Providence, RI, 2002, 27–57 | MR | Zbl
[5] M. V. Bondarko, “Local Leopoldt's problems for rings of integers in abelian $p$-extensions of complete discrete valuation fields”, Doc. Math., 5 (2000), 657–693 | MR | Zbl
[6] N. Byott, “Monogenic Hopf Orders and Associated Orders of Valuation Rings”, J. Algebra, 275 (2004), 575–599 | DOI | MR | Zbl
[7] M. E. Sweedler, Hopf algebras, W. A. Benjamin, Inc., New York, 1969 | MR | Zbl
[8] J.-P. Serre, Corps Locaux, Publications de l'Institut de Mathématique de l'Université de Nancago, VIII, Hermann, Paris, 1968 | MR
[9] M. V. Bondarko, “Links between associated additive Galois modules and computation of $H^1$ for local formal group modules”, J. Number Theory, 101 (2003), 74–104 | DOI | MR | Zbl