On the definition of $B$-points
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 219-236

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the so-called Bourgain points ($B$-points) of functions in $L^\infty(\mathbb R)$. In 1993, Bourgain showed that for real-valued bounded function $f$ the set $E_f$ of $B$-points is everywhere dense and has maximal Hausdorff dimension, $\dim_H(E_f)=1$; also the vertical variation of the harmonic extension of $f$ to the upper half-plane is finite at $B$-points. An essentially simpler definition of $B$-points is given compared with the original works by Bourgain. A geometric characterization of the $B$-points of Cantor-like sets is obtained. Bibl. – 7 titles.
@article{ZNSL_2008_355_a9,
     author = {P. A. Mozolyako},
     title = {On the definition of $B$-points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {219--236},
     publisher = {mathdoc},
     volume = {355},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a9/}
}
TY  - JOUR
AU  - P. A. Mozolyako
TI  - On the definition of $B$-points
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 219
EP  - 236
VL  - 355
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a9/
LA  - ru
ID  - ZNSL_2008_355_a9
ER  - 
%0 Journal Article
%A P. A. Mozolyako
%T On the definition of $B$-points
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 219-236
%V 355
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a9/
%G ru
%F ZNSL_2008_355_a9
P. A. Mozolyako. On the definition of $B$-points. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 219-236. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a9/