@article{ZNSL_2008_355_a9,
author = {P. A. Mozolyako},
title = {On the definition of $B$-points},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {219--236},
year = {2008},
volume = {355},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a9/}
}
P. A. Mozolyako. On the definition of $B$-points. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 219-236. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a9/
[1] J. Bourgain, “On the radial variation of bounded analytic functions on the disc”, Duke Math. J., 69:3 (1993), 671–682 | DOI | MR | Zbl
[2] Zh. Burgein, “Ogranichennost variatsii svërtok mer”, Matem. zametki, 54:4 (1993), 24–33 | MR | Zbl
[3] W. Rudin, “The radial variation of analytic functions”, Duke Math. J., 22 (1955), 235–242 | DOI | MR | Zbl
[4] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR
[5] M. D. O'Neill, “Vertical variation of harmonic functions in upper half spaces”, Colloq. Math., 87 (2001), 1–12 | DOI | MR
[6] P. Jones, “A complete bounded submanifold of $\mathbb C^3$”, Proc. Amer. Math. Soc., 76 (1979), 305–306 | DOI | MR | Zbl
[7] P. A. Mozolyako, V. P. Khavin, O silnoi skhodimosti approksimativnykh edinits, Gotovitsya k publikatsii | Zbl