On the definition of $B$-points
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 219-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is devoted to the study of the so-called Bourgain points ($B$-points) of functions in $L^\infty(\mathbb R)$. In 1993, Bourgain showed that for real-valued bounded function $f$ the set $E_f$ of $B$-points is everywhere dense and has maximal Hausdorff dimension, $\dim_H(E_f)=1$; also the vertical variation of the harmonic extension of $f$ to the upper half-plane is finite at $B$-points. An essentially simpler definition of $B$-points is given compared with the original works by Bourgain. A geometric characterization of the $B$-points of Cantor-like sets is obtained. Bibl. – 7 titles.
@article{ZNSL_2008_355_a9,
     author = {P. A. Mozolyako},
     title = {On the definition of $B$-points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {219--236},
     year = {2008},
     volume = {355},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a9/}
}
TY  - JOUR
AU  - P. A. Mozolyako
TI  - On the definition of $B$-points
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 219
EP  - 236
VL  - 355
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a9/
LA  - ru
ID  - ZNSL_2008_355_a9
ER  - 
%0 Journal Article
%A P. A. Mozolyako
%T On the definition of $B$-points
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 219-236
%V 355
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a9/
%G ru
%F ZNSL_2008_355_a9
P. A. Mozolyako. On the definition of $B$-points. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 219-236. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a9/

[1] J. Bourgain, “On the radial variation of bounded analytic functions on the disc”, Duke Math. J., 69:3 (1993), 671–682 | DOI | MR | Zbl

[2] Zh. Burgein, “Ogranichennost variatsii svërtok mer”, Matem. zametki, 54:4 (1993), 24–33 | MR | Zbl

[3] W. Rudin, “The radial variation of analytic functions”, Duke Math. J., 22 (1955), 235–242 | DOI | MR | Zbl

[4] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[5] M. D. O'Neill, “Vertical variation of harmonic functions in upper half spaces”, Colloq. Math., 87 (2001), 1–12 | DOI | MR

[6] P. Jones, “A complete bounded submanifold of $\mathbb C^3$”, Proc. Amer. Math. Soc., 76 (1979), 305–306 | DOI | MR | Zbl

[7] P. A. Mozolyako, V. P. Khavin, O silnoi skhodimosti approksimativnykh edinits, Gotovitsya k publikatsii | Zbl