Expansion of vectors in powers of a matrix
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 199-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we investigate the problem of expansion of any $d$-dimensional vector in powers of a dilation matrix $M$. (A dilation matrix is an integral matrix of size $d\times d$ with all eigenvalues greater than 1 in modulus.) This expansion can be viewed as a multidimensional system of numeration with the matrix as the base and a special set of vectors as the set of digits. We give a constructive method of expanding an integral vector in powers of a dilation matrix and prove the existence of an expansion for any real vector. Bibl. – 4 titles.
@article{ZNSL_2008_355_a8,
     author = {I. E. Maksimenko and E. L. Rabkin},
     title = {Expansion of vectors in powers of a~matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--218},
     year = {2008},
     volume = {355},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a8/}
}
TY  - JOUR
AU  - I. E. Maksimenko
AU  - E. L. Rabkin
TI  - Expansion of vectors in powers of a matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 199
EP  - 218
VL  - 355
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a8/
LA  - ru
ID  - ZNSL_2008_355_a8
ER  - 
%0 Journal Article
%A I. E. Maksimenko
%A E. L. Rabkin
%T Expansion of vectors in powers of a matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 199-218
%V 355
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a8/
%G ru
%F ZNSL_2008_355_a8
I. E. Maksimenko; E. L. Rabkin. Expansion of vectors in powers of a matrix. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 199-218. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a8/

[1] I. Dobeshi, Desyat lektsii po veivletam, NITs Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2001

[2] I. E. Maksimenko, M. A. Skopina, “Mnogomernye periodicheskie vspleski”, Algebra i analiz, 15:2 (2003), 1–39 | MR | Zbl

[3] V. A. Sadovnichii, Teoriya operatorov, Izd-vo “Vysshaya shkola”, M., 1999

[4] P. Wojtaszczyk, A mathematical introduction to wavelets, London Math. Soc. Student texts, 37, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl