Expansion of vectors in powers of a matrix
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 199-218
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we investigate the problem of expansion of any $d$-dimensional vector in powers of a dilation matrix $M$. (A dilation matrix is an integral matrix of size $d\times d$ with all eigenvalues greater than 1 in modulus.) This expansion can be viewed as a multidimensional system of numeration with the matrix as the base and a special set of vectors as the set of digits. We give a constructive method of expanding an integral vector in powers of a dilation matrix and prove the existence of an expansion for any real vector. Bibl. – 4 titles.
@article{ZNSL_2008_355_a8,
author = {I. E. Maksimenko and E. L. Rabkin},
title = {Expansion of vectors in powers of a~matrix},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {199--218},
year = {2008},
volume = {355},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a8/}
}
I. E. Maksimenko; E. L. Rabkin. Expansion of vectors in powers of a matrix. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 199-218. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a8/
[1] I. Dobeshi, Desyat lektsii po veivletam, NITs Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2001
[2] I. E. Maksimenko, M. A. Skopina, “Mnogomernye periodicheskie vspleski”, Algebra i analiz, 15:2 (2003), 1–39 | MR | Zbl
[3] V. A. Sadovnichii, Teoriya operatorov, Izd-vo “Vysshaya shkola”, M., 1999
[4] P. Wojtaszczyk, A mathematical introduction to wavelets, London Math. Soc. Student texts, 37, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl