Littlewood--Paley theorem for arbitrary intervals: weighted estimates
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 180-198
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Suppose $1$ and $b$ is a weight on $\mathbb R$ such that $b^{-\frac1{r-1}}$ satisfies the Muckenhoupt condition $A_{r'/2}$ ($r'$ is the exponent conjugate to $r$). If $f_j$ are functions whose Fourier transforms are supported on mutually disjoint intervals, then
$$
\Bigl\Vert\sum_j f_j\Bigr\Vert_{L^p(\mathbb R,b)}\le C\Bigl\Vert\Bigl(\sum_j|f_j|^2\Bigr)^{1/2}\Bigr\Vert_{L^p(\mathbb R,b)}
$$
for $0$. Bibl. – 9 titles.
			
            
            
            
          
        
      @article{ZNSL_2008_355_a7,
     author = {S. V. Kislyakov},
     title = {Littlewood--Paley theorem for arbitrary intervals: weighted estimates},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {180--198},
     publisher = {mathdoc},
     volume = {355},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a7/}
}
                      
                      
                    S. V. Kislyakov. Littlewood--Paley theorem for arbitrary intervals: weighted estimates. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 180-198. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a7/