Littlewood--Paley theorem for arbitrary intervals: weighted estimates
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 180-198

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $1$ and $b$ is a weight on $\mathbb R$ such that $b^{-\frac1{r-1}}$ satisfies the Muckenhoupt condition $A_{r'/2}$ ($r'$ is the exponent conjugate to $r$). If $f_j$ are functions whose Fourier transforms are supported on mutually disjoint intervals, then $$ \Bigl\Vert\sum_j f_j\Bigr\Vert_{L^p(\mathbb R,b)}\le C\Bigl\Vert\Bigl(\sum_j|f_j|^2\Bigr)^{1/2}\Bigr\Vert_{L^p(\mathbb R,b)} $$ for $0$. Bibl. – 9 titles.
@article{ZNSL_2008_355_a7,
     author = {S. V. Kislyakov},
     title = {Littlewood--Paley theorem for arbitrary intervals: weighted estimates},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {180--198},
     publisher = {mathdoc},
     volume = {355},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a7/}
}
TY  - JOUR
AU  - S. V. Kislyakov
TI  - Littlewood--Paley theorem for arbitrary intervals: weighted estimates
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 180
EP  - 198
VL  - 355
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a7/
LA  - ru
ID  - ZNSL_2008_355_a7
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%T Littlewood--Paley theorem for arbitrary intervals: weighted estimates
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 180-198
%V 355
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a7/
%G ru
%F ZNSL_2008_355_a7
S. V. Kislyakov. Littlewood--Paley theorem for arbitrary intervals: weighted estimates. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 180-198. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a7/