Toeplitz condition numbers as an $H^\infty$ interpolation problem
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 173-179
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The condition numbers $CN(T)=\Vert T\Vert\cdot\Vert T^{-1}\Vert$ of Toeplitz and analyticToeplitz $n\times n$ matrices $T$ are studied. It is shown that the supremum of $CN(T)$ over all such matrices with $\Vert T\Vert\leq1$ and a given minimum of eigenvalues $r=\min_{i=1,\dots,n}|\lambda_i|>0$ behaves as the corresponding supremum over all $n\times n$ matrices (i.e., as $\frac1{r^n}$; Kronecker), and this equivalence is uniform in $n$ and $r$. The proof is based on the use of the Sarason–Sz.-Nagy–Foiaş commutant lifting theorem. Bibl. – 2 titles.
			
            
            
            
          
        
      @article{ZNSL_2008_355_a6,
     author = {R. Zarouf},
     title = {Toeplitz condition numbers as an $H^\infty$ interpolation problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {173--179},
     publisher = {mathdoc},
     volume = {355},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a6/}
}
                      
                      
                    R. Zarouf. Toeplitz condition numbers as an $H^\infty$ interpolation problem. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 173-179. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a6/