Toeplitz condition numbers as an $H^\infty$ interpolation problem
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 173-179

Voir la notice de l'article provenant de la source Math-Net.Ru

The condition numbers $CN(T)=\Vert T\Vert\cdot\Vert T^{-1}\Vert$ of Toeplitz and analyticToeplitz $n\times n$ matrices $T$ are studied. It is shown that the supremum of $CN(T)$ over all such matrices with $\Vert T\Vert\leq1$ and a given minimum of eigenvalues $r=\min_{i=1,\dots,n}|\lambda_i|>0$ behaves as the corresponding supremum over all $n\times n$ matrices (i.e., as $\frac1{r^n}$; Kronecker), and this equivalence is uniform in $n$ and $r$. The proof is based on the use of the Sarason–Sz.-Nagy–Foiaş commutant lifting theorem. Bibl. – 2 titles.
@article{ZNSL_2008_355_a6,
     author = {R. Zarouf},
     title = {Toeplitz condition numbers as an $H^\infty$ interpolation problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {173--179},
     publisher = {mathdoc},
     volume = {355},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a6/}
}
TY  - JOUR
AU  - R. Zarouf
TI  - Toeplitz condition numbers as an $H^\infty$ interpolation problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 173
EP  - 179
VL  - 355
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a6/
LA  - en
ID  - ZNSL_2008_355_a6
ER  - 
%0 Journal Article
%A R. Zarouf
%T Toeplitz condition numbers as an $H^\infty$ interpolation problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 173-179
%V 355
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a6/
%G en
%F ZNSL_2008_355_a6
R. Zarouf. Toeplitz condition numbers as an $H^\infty$ interpolation problem. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 173-179. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a6/