Radial limits of positive solutions to the Darboux equation
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 163-172
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Assume that a positive function $u$ satisfies the Darboux equation
$$
\Delta u=\frac{(\alpha-1)}y\frac{\partial u}{\partial y},\qquad\alpha>0,
$$
in the upper half-space $\mathbb R_+^{d+1}$. We investigate Bloch type conditions that  guarantee the following property: for any $a\in(0,+\infty)$, the set where the radial limit of $u$ is equal to $a$, is large in the sense of the Hausdorff dimension. Bibl. – 6 titles.
			
            
            
            
          
        
      @article{ZNSL_2008_355_a5,
     author = {E. S. Dubtsov},
     title = {Radial limits of positive solutions to the {Darboux} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {163--172},
     publisher = {mathdoc},
     volume = {355},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a5/}
}
                      
                      
                    E. S. Dubtsov. Radial limits of positive solutions to the Darboux equation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 163-172. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a5/