Radial limits of positive solutions to the Darboux equation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 163-172

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that a positive function $u$ satisfies the Darboux equation $$ \Delta u=\frac{(\alpha-1)}y\frac{\partial u}{\partial y},\qquad\alpha>0, $$ in the upper half-space $\mathbb R_+^{d+1}$. We investigate Bloch type conditions that guarantee the following property: for any $a\in(0,+\infty)$, the set where the radial limit of $u$ is equal to $a$, is large in the sense of the Hausdorff dimension. Bibl. – 6 titles.
@article{ZNSL_2008_355_a5,
     author = {E. S. Dubtsov},
     title = {Radial limits of positive solutions to the {Darboux} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {163--172},
     publisher = {mathdoc},
     volume = {355},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a5/}
}
TY  - JOUR
AU  - E. S. Dubtsov
TI  - Radial limits of positive solutions to the Darboux equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 163
EP  - 172
VL  - 355
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a5/
LA  - ru
ID  - ZNSL_2008_355_a5
ER  - 
%0 Journal Article
%A E. S. Dubtsov
%T Radial limits of positive solutions to the Darboux equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 163-172
%V 355
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a5/
%G ru
%F ZNSL_2008_355_a5
E. S. Dubtsov. Radial limits of positive solutions to the Darboux equation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 163-172. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a5/