Radial limits of positive solutions to the Darboux equation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 163-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Assume that a positive function $u$ satisfies the Darboux equation $$ \Delta u=\frac{(\alpha-1)}y\frac{\partial u}{\partial y},\qquad\alpha>0, $$ in the upper half-space $\mathbb R_+^{d+1}$. We investigate Bloch type conditions that guarantee the following property: for any $a\in(0,+\infty)$, the set where the radial limit of $u$ is equal to $a$, is large in the sense of the Hausdorff dimension. Bibl. – 6 titles.
@article{ZNSL_2008_355_a5,
     author = {E. S. Dubtsov},
     title = {Radial limits of positive solutions to the {Darboux} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {163--172},
     year = {2008},
     volume = {355},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a5/}
}
TY  - JOUR
AU  - E. S. Dubtsov
TI  - Radial limits of positive solutions to the Darboux equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 163
EP  - 172
VL  - 355
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a5/
LA  - ru
ID  - ZNSL_2008_355_a5
ER  - 
%0 Journal Article
%A E. S. Dubtsov
%T Radial limits of positive solutions to the Darboux equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 163-172
%V 355
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a5/
%G ru
%F ZNSL_2008_355_a5
E. S. Dubtsov. Radial limits of positive solutions to the Darboux equation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 163-172. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a5/

[1] J. J. Donaire, Conjuntos excepcionales para las classes de Zygmund, Thesis, Barcelona, 1995

[2] E. Doubtsov, A. Nicolau, “Symmetric and Zygmund measures in several variables”, Ann. Inst. Fourier (Grenoble), 52:1 (2002), 153–177 | MR | Zbl

[3] E. Doubtsov, “Differentialtion properties of symmetric measures”, Potential Anal., 27:4 (2007), 389–401 | DOI | MR | Zbl

[4] E. S. Dubtsov, “Proizvodnye regulyarnykh mer”, Algebra i analiz, 19:2 (2007), 86–104 | MR | Zbl

[5] P. P. Kargaev, “O polozhitelnykh resheniyakh uravneniya Darbu $\Delta u=\frac{(\alpha-1)}y\frac{\partial u}{\partial y}$, $\alpha>0$, v poluprostranstve $y>0$”, Algebra i analiz, 8:3 (1996), 125–150 | MR | Zbl

[6] J. G. Llorente, “Boundary values of harmonic Bloch functions in Lipschitz domains: a martingale approach”, Potential Anal., 9:3 (1998), 229–260 | DOI | MR | Zbl