On analytic solutions of the heat equation with an operator coefficient
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 139-162
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a bounded linear operator on a Banach space and $g$ a vector-valued function analytic on a neighborhood of the origin of $\mathbb R$. We obtain conditions for the existence of analytic solutions for the Cauchy problem
$$
\begin{cases}
\dfrac{\partial u}{\partial t}=A^2\dfrac{\partial^2u}{\partial x^2},\\u(0,x)=g(x).
\end{cases}
$$
Moreover, we consider a representation of the solution of this problem as a Poisson integral and investigate the Cauchy problem for the corresponding nonhomogeneous equation. Bibl. – 22 titles.
@article{ZNSL_2008_355_a4,
author = {A. Vershynina and S. L. Gefter},
title = {On analytic solutions of the heat equation with an operator coefficient},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {139--162},
publisher = {mathdoc},
volume = {355},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a4/}
}
TY - JOUR AU - A. Vershynina AU - S. L. Gefter TI - On analytic solutions of the heat equation with an operator coefficient JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 139 EP - 162 VL - 355 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a4/ LA - ru ID - ZNSL_2008_355_a4 ER -
A. Vershynina; S. L. Gefter. On analytic solutions of the heat equation with an operator coefficient. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 139-162. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a4/