On analytic solutions of the heat equation with an operator coefficient
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 139-162

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a bounded linear operator on a Banach space and $g$ a vector-valued function analytic on a neighborhood of the origin of $\mathbb R$. We obtain conditions for the existence of analytic solutions for the Cauchy problem $$ \begin{cases} \dfrac{\partial u}{\partial t}=A^2\dfrac{\partial^2u}{\partial x^2},\\u(0,x)=g(x). \end{cases} $$ Moreover, we consider a representation of the solution of this problem as a Poisson integral and investigate the Cauchy problem for the corresponding nonhomogeneous equation. Bibl. – 22 titles.
@article{ZNSL_2008_355_a4,
     author = {A. Vershynina and S. L. Gefter},
     title = {On analytic solutions of the heat equation with an operator coefficient},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--162},
     publisher = {mathdoc},
     volume = {355},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a4/}
}
TY  - JOUR
AU  - A. Vershynina
AU  - S. L. Gefter
TI  - On analytic solutions of the heat equation with an operator coefficient
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 139
EP  - 162
VL  - 355
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a4/
LA  - ru
ID  - ZNSL_2008_355_a4
ER  - 
%0 Journal Article
%A A. Vershynina
%A S. L. Gefter
%T On analytic solutions of the heat equation with an operator coefficient
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 139-162
%V 355
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a4/
%G ru
%F ZNSL_2008_355_a4
A. Vershynina; S. L. Gefter. On analytic solutions of the heat equation with an operator coefficient. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 139-162. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a4/