@article{ZNSL_2008_355_a4,
author = {A. Vershynina and S. L. Gefter},
title = {On analytic solutions of the heat equation with an operator coefficient},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {139--162},
year = {2008},
volume = {355},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a4/}
}
A. Vershynina; S. L. Gefter. On analytic solutions of the heat equation with an operator coefficient. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 139-162. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a4/
[1] E. Hille,, Ordinary differential equations in the complex domain, Wiley-Intersci. Publ., New York–London, 1976 | MR | Zbl
[2] Zh. Adamar, Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978 | MR
[3] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR
[4] I. G. Petrovskii, Lektsii ob uravneniyakh s chastnymi proizvodnymi, Gostekhizdat, M., 1953
[5] S. V. Kowalewsky, “Zur Theorie der partiellen Differentialgleichungen”, J. Reine Angew. Math., 80 (1875), 1–32 | DOI
[6] C. Riquie, Les systèmes d'équations aux dérivées partielles, Gauthier-Villars, Paris, 1910
[7] P. Rosenbloom, “The majorant method. Partial differential equations”, Proc. of the Fourth Symposium in pure Mathematics, Amer. Math. Soc., Providence, RI, 1961, 51–72 | MR
[8] V. P. Palamodov, “Differentsialnye operatory v klasse skhodyaschikhsya stepennykh ryadov i podgotovitelnaya lemma Veiershtrassa”, Funkts. anal. i ego pril., 2:2 (1968), 58–69 | MR | Zbl
[9] F. Treves, “An abstract nonlinear Cauchy–Kovalevska theorem”, Trans. Amer. Math. Soc., 150 (1970), 77–92 | DOI | MR | Zbl
[10] S. Mizokhata, “O sistemakh Kovalevskoi”, Uspekhi mat. nauk, 29:2 (1974), 216–227 | MR | Zbl
[11] L. Ovsyannikov, “Abstraktnaya forma teoremy Koshi–Kovalevskoi i ee prilozheniya”, Uravneniya s chastnymi proizvodnymi, Nauka, Sib. otdel., Novosibirsk, 1980, 88–94 | MR
[12] S. Öuchi, “Characteristic Cauchy problems and solutions of formal power series”, Ann. Inst. Fourier, 33:1 (1983), 131–176 | MR | Zbl
[13] D. Lutz, M. Miyake, R. Schäfke, “On the Borel summability of divergent solutions of the heat equation”, Nagoya Math. J., 154 (1999), 1–29 | MR | Zbl
[14] W. Balser, “Divergent solutions of the heat equation: on an article of Lutz, Miyake and Schäfke”, Pacific J. Math., 188:1 (1999), 53–63 | DOI | MR | Zbl
[15] M. L. Gorbachuk, “O korrektnosti zadachi Koshi dlya operatorno-differentsialnykh uravnenii v klasse analiticheskikh vektor-funktsii”, Dokl. RAN, 374:1 (2000), 7–9 | MR | Zbl
[16] M. L. Gorbachuk, “An operator approach to the Cauchy–Kovalevskaya theorem”, J. Math. Sci. (New York), 99:5 (2000), 1527–1532 | DOI | MR
[17] S. P. Chulkov, “O skhodimosti formalnykh reshenii sistem differentsialnykh uravnenii v chastnykh proizvodnykh”, Funkts. anal. i ego pril., 39:3 (2005), 64–75 | MR | Zbl
[18] A. Khovanskii, S. P. Chulkov, “Polinom Gilberta dlya sistemy lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh s analiticheskimi koeffitsientami”, Izvestiya RAN. Ser. matem., 70:1 (2006), 163–182 | MR | Zbl
[19] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962
[20] G. Grauert, R. Remmert, Analiticheskie lokalnye algebry, Nauka, M., 1988 | MR | Zbl
[21] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR
[22] S. Gefter, V. Mokrenyuk, “Stepennoi ryad $\sum_{n=0}^\infty n!z^n$ i golomorfnye resheniya nekotorykh differentsialnykh uravnenii v banakhovom prostranstve”, Zhurnal matem. fiziki, anal., geom., 2005, no. 1, 53–70 | MR