On analytic solutions of the heat equation with an operator coefficient
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 139-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $A$ be a bounded linear operator on a Banach space and $g$ a vector-valued function analytic on a neighborhood of the origin of $\mathbb R$. We obtain conditions for the existence of analytic solutions for the Cauchy problem $$ \begin{cases} \dfrac{\partial u}{\partial t}=A^2\dfrac{\partial^2u}{\partial x^2},\\u(0,x)=g(x). \end{cases} $$ Moreover, we consider a representation of the solution of this problem as a Poisson integral and investigate the Cauchy problem for the corresponding nonhomogeneous equation. Bibl. – 22 titles.
@article{ZNSL_2008_355_a4,
     author = {A. Vershynina and S. L. Gefter},
     title = {On analytic solutions of the heat equation with an operator coefficient},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--162},
     year = {2008},
     volume = {355},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a4/}
}
TY  - JOUR
AU  - A. Vershynina
AU  - S. L. Gefter
TI  - On analytic solutions of the heat equation with an operator coefficient
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 139
EP  - 162
VL  - 355
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a4/
LA  - ru
ID  - ZNSL_2008_355_a4
ER  - 
%0 Journal Article
%A A. Vershynina
%A S. L. Gefter
%T On analytic solutions of the heat equation with an operator coefficient
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 139-162
%V 355
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a4/
%G ru
%F ZNSL_2008_355_a4
A. Vershynina; S. L. Gefter. On analytic solutions of the heat equation with an operator coefficient. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 139-162. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a4/

[1] E. Hille,, Ordinary differential equations in the complex domain, Wiley-Intersci. Publ., New York–London, 1976 | MR | Zbl

[2] Zh. Adamar, Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978 | MR

[3] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[4] I. G. Petrovskii, Lektsii ob uravneniyakh s chastnymi proizvodnymi, Gostekhizdat, M., 1953

[5] S. V. Kowalewsky, “Zur Theorie der partiellen Differentialgleichungen”, J. Reine Angew. Math., 80 (1875), 1–32 | DOI

[6] C. Riquie, Les systèmes d'équations aux dérivées partielles, Gauthier-Villars, Paris, 1910

[7] P. Rosenbloom, “The majorant method. Partial differential equations”, Proc. of the Fourth Symposium in pure Mathematics, Amer. Math. Soc., Providence, RI, 1961, 51–72 | MR

[8] V. P. Palamodov, “Differentsialnye operatory v klasse skhodyaschikhsya stepennykh ryadov i podgotovitelnaya lemma Veiershtrassa”, Funkts. anal. i ego pril., 2:2 (1968), 58–69 | MR | Zbl

[9] F. Treves, “An abstract nonlinear Cauchy–Kovalevska theorem”, Trans. Amer. Math. Soc., 150 (1970), 77–92 | DOI | MR | Zbl

[10] S. Mizokhata, “O sistemakh Kovalevskoi”, Uspekhi mat. nauk, 29:2 (1974), 216–227 | MR | Zbl

[11] L. Ovsyannikov, “Abstraktnaya forma teoremy Koshi–Kovalevskoi i ee prilozheniya”, Uravneniya s chastnymi proizvodnymi, Nauka, Sib. otdel., Novosibirsk, 1980, 88–94 | MR

[12] S. Öuchi, “Characteristic Cauchy problems and solutions of formal power series”, Ann. Inst. Fourier, 33:1 (1983), 131–176 | MR | Zbl

[13] D. Lutz, M. Miyake, R. Schäfke, “On the Borel summability of divergent solutions of the heat equation”, Nagoya Math. J., 154 (1999), 1–29 | MR | Zbl

[14] W. Balser, “Divergent solutions of the heat equation: on an article of Lutz, Miyake and Schäfke”, Pacific J. Math., 188:1 (1999), 53–63 | DOI | MR | Zbl

[15] M. L. Gorbachuk, “O korrektnosti zadachi Koshi dlya operatorno-differentsialnykh uravnenii v klasse analiticheskikh vektor-funktsii”, Dokl. RAN, 374:1 (2000), 7–9 | MR | Zbl

[16] M. L. Gorbachuk, “An operator approach to the Cauchy–Kovalevskaya theorem”, J. Math. Sci. (New York), 99:5 (2000), 1527–1532 | DOI | MR

[17] S. P. Chulkov, “O skhodimosti formalnykh reshenii sistem differentsialnykh uravnenii v chastnykh proizvodnykh”, Funkts. anal. i ego pril., 39:3 (2005), 64–75 | MR | Zbl

[18] A. Khovanskii, S. P. Chulkov, “Polinom Gilberta dlya sistemy lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh s analiticheskimi koeffitsientami”, Izvestiya RAN. Ser. matem., 70:1 (2006), 163–182 | MR | Zbl

[19] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962

[20] G. Grauert, R. Remmert, Analiticheskie lokalnye algebry, Nauka, M., 1988 | MR | Zbl

[21] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[22] S. Gefter, V. Mokrenyuk, “Stepennoi ryad $\sum_{n=0}^\infty n!z^n$ i golomorfnye resheniya nekotorykh differentsialnykh uravnenii v banakhovom prostranstve”, Zhurnal matem. fiziki, anal., geom., 2005, no. 1, 53–70 | MR