Mutual estimates of $L^p$-norms, and the Bellman function
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 81-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A description of the possible values of the $L^p$-norm of a function is obtained under fixed $L^p$-norms for two other values of $p$ and under a natural multiplicative restriction, like the Muckenhoupt condition. Among special cases of our results, we mention simple interpolation inequalities between two $L^p$-norms, as well as nontrivial ones, such as the Gehring inequality or the reverse Hölder inequality for Mackenhoupt weights. The method of the paper is construction of the true Bellman function for the corresponding extremal problem. Bibl. – 5 titles.
@article{ZNSL_2008_355_a3,
     author = {V. I. Vasyunin},
     title = {Mutual estimates of $L^p$-norms, and the {Bellman} function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {81--138},
     year = {2008},
     volume = {355},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a3/}
}
TY  - JOUR
AU  - V. I. Vasyunin
TI  - Mutual estimates of $L^p$-norms, and the Bellman function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 81
EP  - 138
VL  - 355
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a3/
LA  - ru
ID  - ZNSL_2008_355_a3
ER  - 
%0 Journal Article
%A V. I. Vasyunin
%T Mutual estimates of $L^p$-norms, and the Bellman function
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 81-138
%V 355
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a3/
%G ru
%F ZNSL_2008_355_a3
V. I. Vasyunin. Mutual estimates of $L^p$-norms, and the Bellman function. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 81-138. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a3/

[1] V. I. Vasyunin, “Tochnaya konstanta v obratnom neravenstve Geldera dlya makenkhauptovskikh vesov”, Algebra i analiz, 15:1 (2003), 73–117 | MR | Zbl

[2] A. A. Korenovskii, “Ob obratnom neravenstve Geldera”, Matem. zametki, 81:3 (2007), 361–373 | MR | Zbl

[3] F. L. Nazarov, S. R. Treil, “Okhota na funktsiyu Bellmana: prilozheniya k otsenkam singulyarnykh integralnykh operatorov i k drugim klassicheskim zadacham garmonicheskogo analiza”, Algebra i analiz, 8:5 (1996), 32–162 | MR

[4] O. Shlepakov, Diplomnaya rabota, Odesskii natsionalnyi universitet im. I. I. Mechnikova, 2007

[5] A. Volberg, “Bellman approach to some problems in harmonic analysis”, Sém. Équ. Dériv. Part. (Politech.), no. 19, 2001–2002, 14 pp.