Boundary interpolation in the weak Lipschitz classes
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 72-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the Lipschitz spaces with the weak modules of continuity $\omega_\alpha(t)=\exp(-\log^\alpha\frac1t)$, $0<\alpha<1$, conditions sufficient for interpolation are found that are very close to being necessary. Bibl. – 7 titles.
@article{ZNSL_2008_355_a2,
     author = {A. V. Vasin},
     title = {Boundary interpolation in the weak {Lipschitz} classes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {72--80},
     year = {2008},
     volume = {355},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a2/}
}
TY  - JOUR
AU  - A. V. Vasin
TI  - Boundary interpolation in the weak Lipschitz classes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 72
EP  - 80
VL  - 355
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a2/
LA  - ru
ID  - ZNSL_2008_355_a2
ER  - 
%0 Journal Article
%A A. V. Vasin
%T Boundary interpolation in the weak Lipschitz classes
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 72-80
%V 355
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a2/
%G ru
%F ZNSL_2008_355_a2
A. V. Vasin. Boundary interpolation in the weak Lipschitz classes. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 72-80. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a2/

[1] A. V. Vasin, “Ob odnom neobkhodimom uslovii dlya interpolyatsii funktsiyami klassa Lipshitsa”, Zap. nauchn. semin. POMI, 315, POMI, SPb., 2004, 39–42 | MR | Zbl

[2] E. M. Dynkin, “Mnozhestva svobodnoi interpolyatsii dlya klassov Gëldera”, Matem. sb., 151:1 (1979), 107–128 | MR | Zbl

[3] E. M. Dynkin, “Otsenki analiticheskikh funktsii v zhordanovykh oblastyakh”, Zap. nauchn. semin. LOMI, 73, Nauka, L., 1977, 70–90 | MR

[4] A. M. Kotochigov, “Interpolyatsiya analiticheskimi funktsiyami, gladkimi vplot do granitsy”, Zap. nauchn. semin. LOMI, 30, Nauka, L., 1972, 167–169 | Zbl

[5] N. A. Shirokov, “Svobodnaya interpolyatsiya v prostranstvakh $C_{r,\omega}^A$”, Matem. sb., 159:3 (1982), 337–358 | MR | Zbl

[6] J. Bruna, “Les ensembles d'interpolation des $A^p(D)$”, C. R. Acad. Sci. Paris Sér. A–B, 290:1 (1980), 25–27 | MR | Zbl

[7] Ch. Pommerenke, Boundary behavior of conformal maps, Springer-Verlag, Berlin–Heidelberg, 1992 | MR | Zbl