@article{ZNSL_2008_355_a2,
author = {A. V. Vasin},
title = {Boundary interpolation in the weak {Lipschitz} classes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {72--80},
year = {2008},
volume = {355},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a2/}
}
A. V. Vasin. Boundary interpolation in the weak Lipschitz classes. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 72-80. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a2/
[1] A. V. Vasin, “Ob odnom neobkhodimom uslovii dlya interpolyatsii funktsiyami klassa Lipshitsa”, Zap. nauchn. semin. POMI, 315, POMI, SPb., 2004, 39–42 | MR | Zbl
[2] E. M. Dynkin, “Mnozhestva svobodnoi interpolyatsii dlya klassov Gëldera”, Matem. sb., 151:1 (1979), 107–128 | MR | Zbl
[3] E. M. Dynkin, “Otsenki analiticheskikh funktsii v zhordanovykh oblastyakh”, Zap. nauchn. semin. LOMI, 73, Nauka, L., 1977, 70–90 | MR
[4] A. M. Kotochigov, “Interpolyatsiya analiticheskimi funktsiyami, gladkimi vplot do granitsy”, Zap. nauchn. semin. LOMI, 30, Nauka, L., 1972, 167–169 | Zbl
[5] N. A. Shirokov, “Svobodnaya interpolyatsiya v prostranstvakh $C_{r,\omega}^A$”, Matem. sb., 159:3 (1982), 337–358 | MR | Zbl
[6] J. Bruna, “Les ensembles d'interpolation des $A^p(D)$”, C. R. Acad. Sci. Paris Sér. A–B, 290:1 (1980), 25–27 | MR | Zbl
[7] Ch. Pommerenke, Boundary behavior of conformal maps, Springer-Verlag, Berlin–Heidelberg, 1992 | MR | Zbl