On Koosis's approach to the proof of the Carleson interpolation theorem
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 5-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to Koosis's approach to the Carleson theorem. It is shown that this approach also works for other related questions. The main emphasis in this paper is on the method. Bibl. – 10 titles.
@article{ZNSL_2008_355_a0,
     author = {A. B. Aleksandrov},
     title = {On {Koosis's} approach to the proof of the {Carleson} interpolation theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--36},
     year = {2008},
     volume = {355},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - On Koosis's approach to the proof of the Carleson interpolation theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 5
EP  - 36
VL  - 355
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a0/
LA  - ru
ID  - ZNSL_2008_355_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T On Koosis's approach to the proof of the Carleson interpolation theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 5-36
%V 355
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a0/
%G ru
%F ZNSL_2008_355_a0
A. B. Aleksandrov. On Koosis's approach to the proof of the Carleson interpolation theorem. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 36, Tome 355 (2008), pp. 5-36. http://geodesic.mathdoc.fr/item/ZNSL_2008_355_a0/

[1] Dzh. Garnet, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR

[2] P. Kusis, Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR

[3] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[4] N. K. Nikolski, Operators, functions, and systems: an easy reading. Vol. I. Hardy, Hankel, and Toeplitz, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[5] J. P. Earl, “On the interpolation of bounded sequences by bounded functions”, J. London Math. Soc. (2), 2:3 (1970), 544–548 | MR | Zbl

[6] J. P. Earl, “A note on bounded interpolation in the unit disc”, J. London Math. Soc. (2), 13:3 (1976), 419–423 | DOI | MR | Zbl

[7] John B. Garnett, “Two remarks on interpolation by bounded analytic functions”, Banach spaces of analytic functions, Proc. Pelczynski Conf. (Kent State Univ., Kent, Ohio, 1976), Lecture Notes in Math., 604, Springer, Berlin, 1977, 32–40 | MR

[8] P. W. Jones, “$L^\infty$ estimates for the $\overline\partial$ problem in a half-plane”, Acta Math., 150:1–2 (1983), 137–152 | DOI | MR | Zbl

[9] P. Koosis, “Carleson's interpolation theorem deduced from a result of Pick”, Complex Analysis, Operators, and Related Topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 151–162 | MR | Zbl

[10] S. A. Vinogradov, E. A. Gorin, S. V. Khruschev, “Svobodnaya interpolyatsiya v $H^\infty$ po Dzhonsu”, Zap. nauchn. semin. LOMI, 113, Nauka, L., 1981, 212–214 | MR | Zbl