Effective model of a porous-fluid medium
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 37, Tome 354 (2008), pp. 190-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the medium containing alternating porous Biot layers and fluid layers, the effective model is established by the method of matrix averaging. The investigation of equations of this effective model shows that the wave field consists of the leading front and two triangular fronts. The velocities of these fronts along the axes are determined. If thicknesses of the fluid layers are very small then the second triangular front turns into back concave front and a slow wave arises. This slow wave is of interest for seismics. Bibl. – 11 titles, fig. – 5.
@article{ZNSL_2008_354_a9,
     author = {L. A. Molotkov},
     title = {Effective model of a~porous-fluid medium},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {190--211},
     year = {2008},
     volume = {354},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a9/}
}
TY  - JOUR
AU  - L. A. Molotkov
TI  - Effective model of a porous-fluid medium
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 190
EP  - 211
VL  - 354
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a9/
LA  - ru
ID  - ZNSL_2008_354_a9
ER  - 
%0 Journal Article
%A L. A. Molotkov
%T Effective model of a porous-fluid medium
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 190-211
%V 354
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a9/
%G ru
%F ZNSL_2008_354_a9
L. A. Molotkov. Effective model of a porous-fluid medium. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 37, Tome 354 (2008), pp. 190-211. http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a9/

[1] L. A. Molotkov, “Ob ekvivalentnosti sloisto-periodicheskikh i transversalno-izotropnykh sred”, Zap. nauchn. semin. LOMI, 89, 1979, 219–233 | MR | Zbl

[2] L. A. Molotkov, Issledovanie rasprostraneniya voln v poristykh i treschinovatykh sredakh na osnove effektivnykh modelei Bio i sloistykh sred, Nauka, SPb., 2001

[3] L. A. Molotkov, A. V. Bakulin, “Effektivnaya model sloistoi uprugo-zhidkoi sredy kak chastnyi sluchai modeli Bio”, Zap. nauchn. semin. POMI, 230, 1995, 172–195 | MR | Zbl

[4] K. D. Mahrer, F. J. Mauk, “Seismic wave motion for a new model of hydraulic fracture with an induced low velocity zone”, J. Geophys. Res., 92:2 (1987), 9293–9309 | DOI

[5] T. J. Plona, K. W. Winkler, M. Schoenberg, “Acoustic waves in alternating fluid/solid layers”, J. Acoust. Soc. Amer., 81:5 (1987), 1227–1234 | DOI

[6] M. A. Biot, “Theory of elastic waves in fluid-saturated porous solid. I: Low frequency range”, J. Acoust. Soc. Amer., 28 (1956), 168–178 | DOI | MR

[7] M. A. Biot, “Theory of elastic waves in fluid-saturated porous solid. II: High frequency range”, J. Acoust. Soc. Amer., 28 (1956), 179–191 | DOI | MR

[8] L. A. Molotkov, Matrichnyi metod v teorii rasprostraneniya voln v sloistykh uprugikh i zhidkikh sredakh, L., 1984

[9] L. A. Molotkov, “O metodakh vyvoda uravnenii, opisyvayuschikh effektivnye modeli sloistykh sred”, Zap. nauchn. semin. POMI, 250, 1998, 219–243 | MR | Zbl

[10] L. A. Molotkov, A. E. Khilo, “Issledovanie odnofaznykh i mnogofaznykh effektivnykh modelei, opisyvayuschikh periodicheskie sredy”, Zap. nauchn. semin. LOMI, 140, 1984, 105–123

[11] F. R. Gantmakher, Teoriya matrits, M., 1967